Suppr超能文献

室温下快速的A位阳离子交换:单阳离子到双阳离子和三阳离子卤化物钙钛矿纳米晶体

Fast A-Site Cation Cross-Exchange at Room Temperature: Single-to Double- and Triple-Cation Halide Perovskite Nanocrystals.

作者信息

Otero-Martínez Clara, Imran Muhammad, Schrenker Nadine J, Ye Junzhi, Ji Kangyu, Rao Akshay, Stranks Samuel D, Hoye Robert L Z, Bals Sara, Manna Liberato, Pérez-Juste Jorge, Polavarapu Lakshminarayana

机构信息

Department of Physical Chemistry, CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Campus Universitario As Lagoas, Marcosende, 36310, Vigo, Spain.

Department of Physical Chemistry, CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310, Vigo, Spain.

出版信息

Angew Chem Int Ed Engl. 2022 Aug 22;61(34):e202205617. doi: 10.1002/anie.202205617. Epub 2022 Jul 13.

Abstract

We report here fast A-site cation cross-exchange between APbX perovskite nanocrystals (NCs) made of different A-cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A-cation cross-exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A-oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)- and triple (MACsFA)-cation perovskite NCs with an optical band gap that is finely tunable by their A-site composition. The optical spectroscopy together with structural analysis using XRD and atomically resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and integrated differential phase contrast (iDPC) STEM indicates the homogeneous distribution of different cations in the mixed perovskite NC lattice. Unlike halide ions, the A-cations do not phase-segregate under light illumination.

摘要

我们在此报告,由不同A阳离子(铯(Cs)、甲脒鎓(FA)和甲铵(MA))制成的APbX钙钛矿纳米晶体(NCs)在室温下能快速进行A位阳离子的交叉交换。令人惊讶的是,在新制备的胶体钙钛矿NC溶液中存在的游离油酸A络合物的帮助下,A阳离子的交叉交换与卤化物(X = Cl、Br或I)交换一样快。这使得能够制备具有通过其A位组成可精细调节的光学带隙的双阳离子(MACs、MAFA、CsFA)和三阳离子(MACsFA)钙钛矿NCs。光谱学以及使用XRD和原子分辨高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和积分差分相衬(iDPC)STEM进行的结构分析表明,不同阳离子在混合钙钛矿NC晶格中均匀分布。与卤离子不同,A阳离子在光照下不会发生相分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6067/9540746/cd60c4c3c6bb/ANIE-61-0-g004.jpg

相似文献

1
Fast A-Site Cation Cross-Exchange at Room Temperature: Single-to Double- and Triple-Cation Halide Perovskite Nanocrystals.
Angew Chem Int Ed Engl. 2022 Aug 22;61(34):e202205617. doi: 10.1002/anie.202205617. Epub 2022 Jul 13.
2
Experimental analysis of methylammonium and Formamidinium-based halide perovskite properties for optoelectronic applications.
Heliyon. 2023 Oct 28;9(11):e21701. doi: 10.1016/j.heliyon.2023.e21701. eCollection 2023 Nov.
5
Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication.
Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13887-13892. doi: 10.1002/anie.201605909. Epub 2016 Sep 30.
6
Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals.
J Phys Chem Lett. 2016 Aug 18;7(16):3270-7. doi: 10.1021/acs.jpclett.6b01406. Epub 2016 Aug 9.
8
Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition.
ACS Nano. 2018 Oct 23;12(10):10327-10337. doi: 10.1021/acsnano.8b05555. Epub 2018 Sep 25.
9
Rb cations enable the change of luminescence properties in perovskite (RbCsPbBr) quantum dots.
Nanoscale. 2018 Feb 15;10(7):3429-3437. doi: 10.1039/c7nr07776a.
10
Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.
J Am Chem Soc. 2015 Aug 19;137(32):10276-81. doi: 10.1021/jacs.5b05602. Epub 2015 Aug 6.

引用本文的文献

1
Cation Exchange in Lead Halide Perovskite Quantum Dots toward Functional Optoelectronic Applications.
Small Sci. 2023 Nov 27;4(1):2300132. doi: 10.1002/smsc.202300132. eCollection 2024 Jan.
2
Research Advances in Ion Exchange of Halide Perovskites.
Nanomaterials (Basel). 2025 Feb 28;15(5):375. doi: 10.3390/nano15050375.
3
Spectroelectrochemical insights into the intrinsic nature of lead halide perovskites.
Nano Converg. 2024 Nov 30;11(1):49. doi: 10.1186/s40580-024-00459-w.
4
Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics.
Nat Commun. 2024 Sep 16;15(1):8120. doi: 10.1038/s41467-024-52377-4.
6
Colloidal Aziridinium Lead Bromide Quantum Dots.
ACS Nano. 2024 Feb 6;18(7):5684-97. doi: 10.1021/acsnano.3c11579.
7
The role of ion migration, octahedral tilt, and the A-site cation on the instability of CsFAPbI.
Nat Commun. 2023 Dec 22;14(1):8523. doi: 10.1038/s41467-023-44235-6.

本文引用的文献

1
Over 21% Efficiency Stable 2D Perovskite Solar Cells.
Adv Mater. 2022 Jan;34(1):e2107211. doi: 10.1002/adma.202107211. Epub 2021 Oct 25.
2
Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No-Confinement to 3D and 1D Quantum Confinement.
Angew Chem Int Ed Engl. 2021 Dec 13;60(51):26677-26684. doi: 10.1002/anie.202109308. Epub 2021 Nov 15.
3
Phase Engineering of Cesium Manganese Bromides Nanocrystals with Color-Tunable Emission.
Angew Chem Int Ed Engl. 2021 Sep 1;60(36):19653-19659. doi: 10.1002/anie.202105413. Epub 2021 Jul 29.
4
State of the Art and Prospects for Halide Perovskite Nanocrystals.
ACS Nano. 2021 Jul 27;15(7):10775-10981. doi: 10.1021/acsnano.0c08903. Epub 2021 Jun 17.
5
B-Site Co-Alloying with Germanium Improves the Efficiency and Stability of All-Inorganic Tin-Based Perovskite Nanocrystal Solar Cells.
Angew Chem Int Ed Engl. 2020 Dec 1;59(49):22117-22125. doi: 10.1002/anie.202008724. Epub 2020 Sep 25.
6
Atomic Spatial and Temporal Imaging of Local Structures and Light Elements inside Zeolite Frameworks.
Adv Mater. 2020 Jan;32(4):e1906103. doi: 10.1002/adma.201906103. Epub 2019 Nov 29.
7
A Cation-Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells.
Angew Chem Int Ed Engl. 2019 May 13;58(20):6688-6692. doi: 10.1002/anie.201902418. Epub 2019 Apr 2.
8
Near-Unity Photoluminescence Quantum Efficiency for All CsPbX (X=Cl, Br, and I) Perovskite Nanocrystals: A Generic Synthesis Approach.
Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5552-5556. doi: 10.1002/anie.201900374. Epub 2019 Mar 8.
9
Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size.
ACS Energy Lett. 2019 Jan 11;4(1):54-62. doi: 10.1021/acsenergylett.8b02207. Epub 2018 Nov 27.
10
Two-Dimensional Hybrid Halide Perovskites: Principles and Promises.
J Am Chem Soc. 2019 Jan 23;141(3):1171-1190. doi: 10.1021/jacs.8b10851. Epub 2018 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验