Suppr超能文献

使用人工智能方法预测正向渗透膜工程因素。

Prediction of forward osmosis membrane engineering factors using artificial intelligence approach.

机构信息

Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.

Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

出版信息

J Environ Manage. 2022 Sep 15;318:115544. doi: 10.1016/j.jenvman.2022.115544. Epub 2022 Jun 21.

Abstract

Currently, forward osmosis (FO) is widely studied for wastewater treatment and reuse. However, there are still challenges which need to be addressed for the application of the FO on a commercial scale. In the meantime, with a strong capability to solve the complicated nonlinear relationships and to examine of the relations between multiple variables, artificial intelligence (AI) technique could be a viable tool to improve FO system performance to make it more applicable. This study aims to develop an AI-based model for supporting early control and making decision in the FO membrane system. The results show that the artificial neural networks model is extremely suitable for prediction of water flux, membrane fouling, and removal efficiencies. The most appropriate input dataset for the model was proposed, in which organic matters, sodium ion, and calcium ion concentrations played a vital role in all predictions. The best model architecture was suggested with an optimal hidden layers (2-4 layers), and neurons (10-15 neurons). The developed models for membrane fouling show strong correlation between experimental and predicted data (with R values for prediction of membrane fouling porosity, thickness, roughness, and density were 0.85, 0.97, 0.97, and 0.98, respectively). The prediction of water flux presented a high R and low root mean square error (RMSE) of 0.92 and 0.9 L m.h, respectively. Prediction of the contaminant removal exhibits a relatively high correlation between the observed and predicted data with R values of 0.87 and RMSE values of below 2.7%. The developed models are expected to create a breakthrough in the control and enhancement in a novel FO membrane process used for wastewater treatment by providing us with actionable insights to produce fit-for-future systems in the context of sustainable development.

摘要

目前,正向渗透(FO)技术在废水处理和再利用方面得到了广泛的研究。然而,要将 FO 技术应用于商业规模,仍存在一些挑战需要解决。与此同时,人工智能(AI)技术具有解决复杂非线性关系和检验多个变量之间关系的强大能力,因此可能是一种可行的工具,可以提高 FO 系统性能,使其更具适用性。本研究旨在开发基于人工智能的模型,以支持 FO 膜系统的早期控制和决策。结果表明,人工神经网络模型非常适合预测水通量、膜污染和去除效率。提出了最适合模型的输入数据集,其中有机物、钠离子和钙离子浓度在所有预测中都起着至关重要的作用。建议采用最佳的模型架构,具有最佳的隐藏层(2-4 层)和神经元(10-15 个神经元)。开发的膜污染模型显示出实验数据与预测数据之间的强相关性(预测膜污染孔隙率、厚度、粗糙度和密度的 R 值分别为 0.85、0.97、0.97 和 0.98)。水通量的预测具有高 R 值和低均方根误差(RMSE),分别为 0.92 和 0.9 L m.h。污染物去除的预测显示出观察数据和预测数据之间的相关性较高,R 值为 0.87,RMSE 值低于 2.7%。预计这些开发的模型将在废水处理中为新型 FO 膜过程的控制和增强提供突破,为我们提供可行的见解,以在可持续发展的背景下生产适合未来的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验