Suppr超能文献

全基因组 CRISPR 筛选 T 细胞耗竭鉴定出限制 T 细胞持久性的染色质重塑因子。

Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence.

机构信息

Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.

Department of Pathology, Stanford University, Stanford, CA 94305, USA.

出版信息

Cancer Cell. 2022 Jul 11;40(7):768-786.e7. doi: 10.1016/j.ccell.2022.06.001. Epub 2022 Jun 23.

Abstract

T cell exhaustion limits antitumor immunity, but the molecular determinants of this process remain poorly understood. Using a chronic stimulation assay, we performed genome-wide CRISPR-Cas9 screens to systematically discover regulators of T cell exhaustion, which identified an enrichment of epigenetic factors. In vivo CRISPR screens in murine and human tumor models demonstrated that perturbation of the INO80 and BAF chromatin remodeling complexes improved T cell persistence in tumors. In vivo Perturb-seq revealed distinct transcriptional roles of each complex and that depletion of canonical BAF complex members, including Arid1a, resulted in the maintenance of an effector program and downregulation of exhaustion-related genes in tumor-infiltrating T cells. Finally, Arid1a depletion limited the acquisition of exhaustion-associated chromatin accessibility and led to improved antitumor immunity. In summary, we provide an atlas of the genetic regulators of T cell exhaustion and demonstrate that modulation of epigenetic state can improve T cell responses in cancer immunotherapy.

摘要

T 细胞耗竭限制了抗肿瘤免疫,但这一过程的分子决定因素仍知之甚少。我们使用慢性刺激测定法,进行了全基因组 CRISPR-Cas9 筛选,以系统地发现 T 细胞耗竭的调节因子,这确定了表观遗传因子的富集。在小鼠和人类肿瘤模型中的体内 CRISPR 筛选表明,INO80 和 BAF 染色质重塑复合物的扰动改善了肿瘤中 T 细胞的持久性。体内 Perturb-seq 揭示了每个复合物的不同转录作用,并且耗尽经典的 BAF 复合物成员,包括 Arid1a,导致维持效应器程序和下调肿瘤浸润 T 细胞中的耗竭相关基因。最后,Arid1a 的耗竭限制了与耗竭相关的染色质可及性的获得,并导致抗肿瘤免疫的改善。总之,我们提供了 T 细胞耗竭的遗传调节因子图谱,并表明表观遗传状态的调节可以改善癌症免疫治疗中的 T 细胞反应。

相似文献

1
Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence.
Cancer Cell. 2022 Jul 11;40(7):768-786.e7. doi: 10.1016/j.ccell.2022.06.001. Epub 2022 Jun 23.
3
Structural and functional properties of mSWI/SNF chromatin remodeling complexes revealed through single-cell perturbation screens.
Mol Cell. 2023 Apr 20;83(8):1350-1367.e7. doi: 10.1016/j.molcel.2023.03.013. Epub 2023 Apr 6.
4
Stepwise activities of mSWI/SNF family chromatin remodeling complexes direct T cell activation and exhaustion.
Mol Cell. 2023 Apr 20;83(8):1216-1236.e12. doi: 10.1016/j.molcel.2023.02.026. Epub 2023 Mar 20.
5
Chromatin Remodeling Factors Drive Epigenetic Changes Crucial for T-cell Exhaustion.
Cancer Discov. 2022 Aug 5;12(8):1837. doi: 10.1158/2159-8290.CD-RW2022-121.
6
Integrated single-cell profiling dissects cell-state-specific enhancer landscapes of human tumor-infiltrating CD8 T cells.
Mol Cell. 2023 Feb 16;83(4):622-636.e10. doi: 10.1016/j.molcel.2022.12.029. Epub 2023 Jan 18.
7
Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens.
Nat Biotechnol. 2021 Oct;39(10):1270-1277. doi: 10.1038/s41587-021-00902-x. Epub 2021 Apr 29.
9
Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks.
Cell. 2019 Jan 10;176(1-2):361-376.e17. doi: 10.1016/j.cell.2018.11.022. Epub 2018 Dec 20.
10
Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy.
J Clin Invest. 2020 May 1;130(5):2712-2726. doi: 10.1172/JCI134402.

引用本文的文献

1
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.
Trends Cancer. 2025 Aug 28. doi: 10.1016/j.trecan.2025.08.001.
3
Multimodal learning decodes the global binding landscape of chromatin-associated proteins.
bioRxiv. 2025 Aug 17:2025.08.17.670761. doi: 10.1101/2025.08.17.670761.
5
USP30 inhibition augments mitophagy to prevent T cell exhaustion.
Sci Adv. 2025 Aug 15;11(33):eadv6902. doi: 10.1126/sciadv.adv6902.
6
Methods and applications of in vivo CRISPR screening.
Nat Rev Genet. 2025 Jul 29. doi: 10.1038/s41576-025-00873-8.
7
Early methionine availability attenuates T cell exhaustion.
Nat Immunol. 2025 Jul 23. doi: 10.1038/s41590-025-02223-6.
8
LARP4-mediated hypertranslation drives T cell dysfunction in tumors.
Nat Immunol. 2025 Jul 22. doi: 10.1038/s41590-025-02232-5.
9
Simulating CD8 T cell exhaustion: A comprehensive approach.
iScience. 2025 Jun 12;28(7):112897. doi: 10.1016/j.isci.2025.112897. eCollection 2025 Jul 18.
10
CD8 + T Cells in Gastrointestinal Cancer: a Perspective on Targeting MicroRNA.
J Mol Med (Berl). 2025 Jul 17. doi: 10.1007/s00109-025-02574-5.

本文引用的文献

1
Divergent clonal differentiation trajectories of T cell exhaustion.
Nat Immunol. 2022 Nov;23(11):1614-1627. doi: 10.1038/s41590-022-01337-5. Epub 2022 Oct 26.
2
Epigenetic regulation of T cell exhaustion.
Nat Immunol. 2022 Jun;23(6):848-860. doi: 10.1038/s41590-022-01224-z. Epub 2022 May 27.
3
BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells.
Nat Immunol. 2021 Aug;22(8):983-995. doi: 10.1038/s41590-021-00964-8. Epub 2021 Jul 19.
4
Not-so-opposite ends of the spectrum: CD8 T cell dysfunction across chronic infection, cancer and autoimmunity.
Nat Immunol. 2021 Jul;22(7):809-819. doi: 10.1038/s41590-021-00949-7. Epub 2021 Jun 17.
6
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
7
Metabolic barriers to cancer immunotherapy.
Nat Rev Immunol. 2021 Dec;21(12):785-797. doi: 10.1038/s41577-021-00541-y. Epub 2021 Apr 29.
8
A unified atlas of CD8 T cell dysfunctional states in cancer and infection.
Mol Cell. 2021 Jun 3;81(11):2477-2493.e10. doi: 10.1016/j.molcel.2021.03.045. Epub 2021 Apr 22.
9
Recruiting T cells in cancer immunotherapy.
Science. 2021 Apr 9;372(6538):130-131. doi: 10.1126/science.abd1329.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验