State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Mol Plant. 2022 Aug 1;15(8):1285-1299. doi: 10.1016/j.molp.2022.06.011. Epub 2022 Jun 24.
Multisubunit SKP1/Cullin1/F-box (SCF) E3 ligases play essential roles in regulating the stability of crucial regulatory factors and controlling growth and development in eukaryotes. Detecting E3 ligase activity in vitro is important for exploring the molecular mechanism of protein ubiquitination. However, in vitro ubiquitination assay systems for multisubunit E3 ligases remain difficult to achieve, especially in plants, mainly owing to difficulties in achieving active components of multisubunit E3 ligases with high purity and characterizing specific E2 and E3 pairs. In this study, we characterized components of the rice SCF (SCF) E3 ligase, screened the coordinated E2, and reconstituted active SCF E3 ligase in vitro. We further engineered SCF E3 ligase using a fused SKP1-Cullin1-RBX1 (eSCR) protein and found that both the wild-type SCF E3 ligase and the engineered SCF E3 ligase catalyzed ubiquitination of the substrate D53, which is the key transcriptional repressor in strigolactone signaling. Finally, we replaced D3 with other F-box proteins from rice and humans and reconstituted active eSCF E3 ligases, including eSCF, eSCF, and eSCF E3 ligases. Our work reconstitutes functional SCF E3 ligases in vitro and generates an engineered system with interchangeable F-box proteins, providing a powerful platform for studying the mechanisms of multisubunit SCF E3 ligases in eukaryotes.
多亚基 SKP1/Cullin1/F-box(SCF)E3 连接酶在调节关键调节因子的稳定性和控制真核生物的生长和发育方面发挥着重要作用。体外检测 E3 连接酶活性对于探索蛋白质泛素化的分子机制非常重要。然而,多亚基 E3 连接酶的体外泛素化测定系统仍然难以实现,特别是在植物中,主要是由于难以获得高纯度的多亚基 E3 连接酶的活性成分,以及难以鉴定特定的 E2 和 E3 对。在本研究中,我们鉴定了水稻 SCF(SCF)E3 连接酶的成分,筛选了协调的 E2,并在体外重新构建了活性的 SCF E3 连接酶。我们进一步利用融合的 SKP1-Cullin1-RBX1(eSCR)蛋白工程化 SCF E3 连接酶,发现野生型 SCF E3 连接酶和工程化的 SCF E3 连接酶都能催化底物 D53 的泛素化,D53 是独脚金内酯信号通路中的关键转录抑制剂。最后,我们用来自水稻和人类的其他 F-box 蛋白替换 D3,并重新构建了活性的 eSCF E3 连接酶,包括 eSCF、eSCF 和 eSCF E3 连接酶。我们的工作在体外重新构建了功能性的 SCF E3 连接酶,并产生了一个具有可互换 F-box 蛋白的工程化系统,为研究真核生物多亚基 SCF E3 连接酶的机制提供了一个强大的平台。