MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ, U.K.
TESCAN-UK Ltd., Wellbrook Court, Girton, Cambridge CB3 0NA, U.K.
ACS Appl Mater Interfaces. 2023 Aug 9;15(31):37259-37273. doi: 10.1021/acsami.3c08031. Epub 2023 Jul 31.
Caries, a major global disease associated with dental enamel demineralization, remains insufficiently understood to devise effective prevention or minimally invasive treatment. Understanding the ultrastructural changes in enamel is hampered by a lack of nanoscale characterization of the chemical spatial distributions within the dental tissue. This leads to the requirement to develop techniques based on various characterization methods. The purpose of the present study is to demonstrate the strength of analytic methods using a correlative technique on a single sample of human dental enamel as a specific case study to test the accuracy of techniques to compare regions in enamel. The science of the different techniques is integrated to genuinely study the enamel. The hierarchical structures within carious tissue were mapped using the combination of focused ion beam scanning electron microscopy with synchrotron X-ray tomography. The chemical changes were studied using scanning X-ray fluorescence (XRF) and X-ray wide-angle and small-angle scattering using a beam size below 80 nm for ångström and nanometer length scales. The analysis of XRF intensity gradients revealed subtle variations of Ca intensity in carious samples in comparison with those of normal mature enamel. In addition, the pathways for enamel rod demineralization were studied using X-ray ptychography. The results show the chemical and structural modification in carious enamel with differing locations. These results reinforce the need for multi-modal approaches to nanoscale analysis in complex hierarchically structured materials to interpret the changes of materials. The approach establishes a meticulous correlative characterization platform for the analysis of biomineralized tissues at the nanoscale, which adds confidence in the interpretation of the results and time-saving imaging techniques. The protocol demonstrated here using the dental tissue sample can be applied to other samples for statistical study and the investigation of nanoscale structural changes. The information gathered from the combination of methods could not be obtained with traditional individual techniques.
龋齿是一种主要的全球性疾病,与牙釉质脱矿有关,但对其发病机制的了解还不足以制定有效的预防或微创治疗方法。由于缺乏对牙组织内化学空间分布的纳米级表征,因此对牙釉质超微结构变化的理解受到阻碍。这导致需要开发基于各种表征方法的技术。本研究的目的是通过对单个人类牙釉质样本进行相关技术的具体案例研究,展示分析方法的优势,以测试比较牙釉质区域的技术的准确性。将不同技术的科学原理整合起来,真正研究牙釉质。使用同步辐射 X 射线断层扫描与聚焦离子束扫描电子显微镜相结合的方法对龋组织的分层结构进行了映射。使用扫描 X 射线荧光(XRF)和 X 射线广角和小角散射技术对化学变化进行了研究,束斑尺寸小于 80nm,适用于埃和纳米长度尺度。XRF 强度梯度分析揭示了与正常成熟牙釉质相比,龋样本中 Ca 强度的细微变化。此外,还使用 X 射线相衬术研究了牙釉质棒脱矿的途径。结果表明,不同位置的龋牙釉质存在化学和结构上的改变。这些结果强化了在复杂的层次结构材料中进行纳米级分析时需要采用多模态方法的必要性,以解释材料的变化。该方法为生物矿化组织的纳米级分析建立了一个精细的相关特征化平台,增加了对结果解释的信心并节省了成像技术的时间。这里演示的使用牙组织样本的方案可以应用于其他样本进行统计研究和纳米结构变化的调查。从组合方法中收集的信息是无法通过传统的单个技术获得的。