Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
Eur Radiol. 2023 Jan;33(1):348-359. doi: 10.1007/s00330-022-08948-4. Epub 2022 Jun 25.
To compare the performance of radiologists in characterizing and diagnosing pulmonary nodules/masses with and without deep learning (DL)-based computer-aided diagnosis (CAD).
We studied a total of 101 nodules/masses detected on CT performed between January and March 2018 at Osaka University Hospital (malignancy: 55 cases). SYNAPSE SAI Viewer V1.4 was used to analyze the nodules/masses. In total, 15 independent radiologists were grouped (n = 5 each) according to their experience: L (< 3 years), M (3-5 years), and H (> 5 years). The likelihoods of 15 characteristics, such as cavitation and calcification, and the diagnosis (malignancy) were evaluated by each radiologist with and without CAD, and the assessment time was recorded. The AUCs compared with the reference standard set by two board-certified chest radiologists were analyzed following the multi-reader multi-case method. Furthermore, interobserver agreement was compared using intraclass correlation coefficients (ICCs).
The AUCs for ill-defined boundary, irregular margin, irregular shape, calcification, pleural contact, and malignancy in all 15 radiologists, irregular margin and irregular shape in L and ill-defined boundary and irregular margin in M improved significantly (p < 0.05); no significant improvements were found in H. L showed the greatest increase in the AUC for malignancy (not significant). The ICCs improved in all groups and for nearly all items. The median assessment time was not prolonged by CAD.
DL-based CAD helps radiologists, particularly those with < 5 years of experience, to accurately characterize and diagnose pulmonary nodules/masses, and improves the reproducibility of findings among radiologists.
• Deep learning-based computer-aided diagnosis improves the accuracy of characterizing nodules/masses and diagnosing malignancy, particularly by radiologists with < 5 years of experience. • Computer-aided diagnosis increases not only the accuracy but also the reproducibility of the findings across radiologists.
比较放射科医生在使用和不使用基于深度学习(DL)的计算机辅助诊断(CAD)的情况下对肺结节/肿块进行特征描述和诊断的表现。
我们研究了 2018 年 1 月至 3 月期间在大阪大学医院进行的总共 101 个 CT 检测到的结节/肿块(恶性:55 例)。使用 SYNAPSE SAI Viewer V1.4 对结节/肿块进行分析。共有 15 名独立的放射科医生根据他们的经验分组(每组 5 名):L(<3 年)、M(3-5 年)和 H(>5 年)。每位放射科医生在使用和不使用 CAD 的情况下评估了 15 个特征的可能性,例如空洞和钙化,以及诊断(恶性),并记录评估时间。使用由两名经过董事会认证的胸部放射科医生设定的参考标准,根据多读者多病例方法分析 AUC。此外,使用组内相关系数(ICC)比较观察者间的一致性。
在所有 15 名放射科医生中,边界不清、边缘不规则、形状不规则、钙化、胸膜接触和恶性的 AUC 以及 L 中的不规则边缘和不规则形状以及 M 中的边界不清和不规则边缘均显著提高(p<0.05);在 H 中未发现显著改善。L 中恶性 AUC 的增加最大(无统计学意义)。所有组的 ICC 均有所提高,几乎所有项目的 ICC 均有所提高。CAD 未延长中位数评估时间。
基于 DL 的 CAD 有助于放射科医生,尤其是经验不足 5 年的放射科医生,更准确地对肺结节/肿块进行特征描述和诊断,并提高放射科医生之间结果的可重复性。
• 基于深度学习的计算机辅助诊断可提高对结节/肿块进行特征描述和诊断恶性肿瘤的准确性,特别是对经验不足 5 年的放射科医生。• 计算机辅助诊断不仅提高了准确性,还提高了放射科医生之间结果的可重复性。