Suppr超能文献

深度学习计算机辅助系统对常规临床人群 CT 肺结节检测、分类和生长速度评估的验证。

Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population.

机构信息

Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.

Edinburgh Imaging facility QMRI, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

PLoS One. 2022 May 5;17(5):e0266799. doi: 10.1371/journal.pone.0266799. eCollection 2022.

Abstract

OBJECTIVE

In this study, we evaluated a commercially available computer assisted diagnosis system (CAD). The deep learning algorithm of the CAD was trained with a lung cancer screening cohort and developed for detection, classification, quantification, and growth of actionable pulmonary nodules on chest CT scans. Here, we evaluated the CAD in a retrospective cohort of a routine clinical population.

MATERIALS AND METHODS

In total, a number of 337 scans of 314 different subjects with reported nodules of 3-30 mm in size were included into the evaluation. Two independent thoracic radiologists alternately reviewed scans with or without CAD assistance to detect, classify, segment, and register pulmonary nodules. A third, more experienced, radiologist served as an adjudicator. In addition, the cohort was analyzed by the CAD alone. The study cohort was divided into five different groups: 1) 178 CT studies without reported pulmonary nodules, 2) 95 studies with 1-10 pulmonary nodules, 23 studies from the same patients with 3) baseline and 4) follow-up studies, and 5) 18 CT studies with subsolid nodules. A reference standard for nodules was based on majority consensus with the third thoracic radiologist as required. Sensitivity, false positive (FP) rate and Dice inter-reader coefficient were calculated.

RESULTS

After analysis of 470 pulmonary nodules, the sensitivity readings for radiologists without CAD and radiologist with CAD, were 71.9% (95% CI: 66.0%, 77.0%) and 80.3% (95% CI: 75.2%, 85.0%) (p < 0.01), with average FP rate of 0.11 and 0.16 per CT scan, respectively. Accuracy and kappa of CAD for classifying solid vs sub-solid nodules was 94.2% and 0.77, respectively. Average inter-reader Dice coefficient for nodule segmentation was 0.83 (95% CI: 0.39, 0.96) and 0.86 (95% CI: 0.51, 0.95) for CAD versus readers. Mean growth percentage discrepancy of readers and CAD alone was 1.30 (95% CI: 1.02, 2.21) and 1.35 (95% CI: 1.01, 4.99), respectively.

CONCLUSION

The applied CAD significantly increased radiologist's detection of actionable nodules yet also minimally increasing the false positive rate. The CAD can automatically classify and quantify nodules and calculate nodule growth rate in a cohort of a routine clinical population. Results suggest this Deep Learning software has the potential to assist chest radiologists in the tasks of pulmonary nodule detection and management within their routine clinical practice.

摘要

目的

本研究评估了一款商业化的计算机辅助诊断系统(CAD)。该 CAD 的深度学习算法经过肺癌筛查队列的训练,旨在检测、分类、量化和监测胸部 CT 扫描中可行动性肺结节的生长。在此,我们在常规临床人群的回顾性队列中评估了该 CAD。

材料和方法

共纳入了 314 名患者的 337 次胸部 CT 扫描,这些患者的结节大小为 3-30mm。两名独立的胸部放射科医生交替地使用或不使用 CAD 辅助进行扫描,以检测、分类、分割和定位肺结节。第三位经验更丰富的放射科医生作为裁决者。此外,还单独使用 CAD 对该队列进行了分析。研究队列分为五组:1)178 例无报告肺结节的 CT 检查,2)95 例有 1-10 个肺结节的检查,3)同一患者的 23 例基线和 4)随访研究,以及 5)18 例亚实性结节的 CT 检查。基于第三位胸部放射科医生的多数共识作为参考标准来确定结节。计算了敏感性、假阳性(FP)率和 Dice 读者间系数。

结果

对 470 个肺结节进行分析后,无 CAD 的放射科医生和有 CAD 的放射科医生的敏感性读数分别为 71.9%(95%CI:66.0%,77.0%)和 80.3%(95%CI:75.2%,85.0%)(p<0.01),平均 FP 率分别为 0.11 和 0.16/CT 扫描。CAD 对实性与亚实性结节的分类准确性和kappa 值分别为 94.2%和 0.77。CAD 用于结节分割的平均读者间 Dice 系数为 0.83(95%CI:0.39,0.96)和 0.86(95%CI:0.51,0.95)。读者和 CAD 单独计算的平均生长百分比差异分别为 1.30(95%CI:1.02,2.21)和 1.35(95%CI:1.01,4.99)。

结论

应用 CAD 显著提高了放射科医生对可行动性结节的检测能力,同时也最小化了假阳性率。CAD 可以自动分类和量化结节,并计算常规临床人群队列中结节的生长速度。结果表明,这款深度学习软件有潜力在胸部放射科医生的日常临床实践中辅助其进行肺结节的检测和管理工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2178/9070877/bc94ddefb4a6/pone.0266799.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验