Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.
Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, CAS, Kunming, Yunnan, China.
J Biol Chem. 2022 Aug;298(8):102179. doi: 10.1016/j.jbc.2022.102179. Epub 2022 Jun 23.
Lipid droplets (LDs) are intracellular organelles that dynamically regulate lipids and energy homeostasis in the cell. LDs can grow through either local lipid synthesis or LD fusion. However, how lipids involving in LD fusion for LD growth is largely unknown. Here, we show that genetic mutation of acox-3 (acyl-CoA oxidase), maoc-1 (enoyl-CoA hydratase), dhs-28 (3-hydroxylacyl-CoA dehydrogenase), and daf-22 (3-ketoacyl-CoA thiolase), all involved in the peroxisomal β-oxidation pathway in Caenorhabditis elegans, led to rapid fusion of adjacent LDs to form giant LDs (gLDs). Mechanistically, we show that dysfunction of peroxisomal β-oxidation results in the accumulation of long-chain fatty acid-CoA and phosphocholine, which may activate the sterol-binding protein 1/sterol regulatory element-binding protein to promote gLD formation. Furthermore, we found that inactivation of either FAT-2 (delta-12 desaturase) or FAT-3 and FAT-1 (delta-15 desaturase and delta-6 desaturase, respectively) to block the biosynthesis of polyunsaturated fatty acids (PUFAs) with three or more double bonds (n≥3-PUFAs) fully repressed the formation of gLDs; in contrast, dietary supplementation of n≥3-PUFAs or phosphocholine bearing these PUFAs led to recovery of the formation of gLDs in peroxisomal β-oxidation-defective worms lacking PUFA biosynthesis. Thus, we conclude that n≥3-PUFAs, distinct from other well-known lipids and proteins, promote rapid LD fusion leading to LD growth.
脂滴 (LDs) 是细胞内的细胞器,可动态调节细胞内的脂质和能量稳态。LDs 可以通过局部脂质合成或 LD 融合来生长。然而,涉及 LD 融合以促进 LD 生长的脂质在很大程度上尚不清楚。在这里,我们发现参与 Caenorhabditis elegans 过氧化物酶体β-氧化途径的 acox-3(酰基辅酶 A 氧化酶)、maoc-1(烯酰辅酶 A 水合酶)、dhs-28(3-羟基酰基辅酶 A 脱氢酶)和 daf-22(3-酮酰基辅酶 A 硫解酶)的基因突变会导致相邻 LD 的快速融合形成巨大 LD(gLD)。从机制上讲,我们表明过氧化物酶体β-氧化功能障碍会导致长链脂肪酸-CoA 和磷酸胆碱的积累,这可能会激活固醇结合蛋白 1/固醇调节元件结合蛋白,从而促进 gLD 的形成。此外,我们发现失活 FAT-2(Δ12 去饱和酶)或 FAT-3 和 FAT-1(Δ15 去饱和酶和 Δ6 去饱和酶,分别)以阻断具有三个或更多双键的多不饱和脂肪酸 (n≥3-PUFAs) 的生物合成完全抑制了 gLD 的形成;相反,饮食补充具有这些 PUFAs 的 n≥3-PUFAs 或带有这些 PUFAs 的磷酸胆碱可恢复缺乏 PUFA 生物合成的过氧化物酶体β-氧化缺陷型蠕虫中 gLD 的形成。因此,我们得出结论,n≥3-PUFAs 与其他众所周知的脂质和蛋白质不同,可促进 LD 快速融合,从而促进 LD 生长。