Suppr超能文献

处理具有部分观测组件的复合结局中的缺失数据:基于聚类儿科常规数据的模拟研究

Handling missing data in a composite outcome with partially observed components: simulation study based on clustered paediatric routine data.

作者信息

Gachau Susan, Njagi Edmund Njeru, Owuor Nelson, Mwaniki Paul, Quartagno Matteo, Sarguta Rachel, English Mike, Ayieko Philip

机构信息

Health Services Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya.

School of Mathematics, University of Nairobi, Nairobi, Kenya.

出版信息

J Appl Stat. 2021 Mar 17;49(9):2389-2402. doi: 10.1080/02664763.2021.1895087. eCollection 2022.

Abstract

Composite scores are useful in providing insights and trends about complex and multidimensional quality of care processes. However, missing data in subcomponents may hinder the overall reliability of a composite measure. In this study, strategies for handling missing data in Paediatric Admission Quality of Care (PAQC) score, an ordinal composite outcome, were explored through a simulation study. Specifically, the implications of the conventional method employed in addressing missing PAQC score subcomponents, consisting of scoring missing PAQC score components with a zero, and a multiple imputation (MI)-based strategy, were assessed. The latent normal joint modelling MI approach was used for the latter. Across simulation scenarios, MI of missing PAQC score elements at item level produced minimally biased estimates compared to the conventional method. Moreover, regression coefficients were more prone to bias compared to standards errors. Magnitude of bias was dependent on the proportion of missingness and the missing data generating mechanism. Therefore, incomplete composite outcome subcomponents should be handled carefully to alleviate potential for biased estimates and misleading inferences. Further research on other strategies of imputing at the component and composite outcome level and imputing compatibly with the substantive model in this setting, is needed.

摘要

综合评分有助于深入了解复杂且多维度的医疗质量过程及其趋势。然而,子组件中的数据缺失可能会影响综合指标的整体可靠性。在本研究中,通过模拟研究探索了处理儿科入院护理质量(PAQC)评分(一种有序综合结果)中缺失数据的策略。具体而言,评估了处理PAQC评分子组件中缺失数据时采用的传统方法(即将缺失的PAQC评分组件计为零)和基于多重填补(MI)的策略的影响。后者采用了潜在正态联合建模MI方法。在各种模拟场景中,与传统方法相比,在项目层面上对缺失的PAQC评分元素进行多重填补产生的偏差估计最小。此外,与标准误差相比,回归系数更容易出现偏差。偏差的大小取决于缺失率和缺失数据生成机制。因此,应谨慎处理不完整的综合结果子组件,以减少偏差估计和误导性推断的可能性。在此背景下,需要进一步研究在组件和综合结果层面进行填补以及与实质模型兼容填补的其他策略。

相似文献

7
Evaluation of approaches for multiple imputation of three-level data.三水平数据的多重插补方法评价。
BMC Med Res Methodol. 2020 Aug 12;20(1):207. doi: 10.1186/s12874-020-01079-8.

本文引用的文献

5
Using simulation studies to evaluate statistical methods.运用模拟研究评估统计方法。
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验