Quartagno Matteo, Carpenter James R
Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.
MRC Clinical Trials Unit at UCL, 90 High Holborn, London, UK.
Biom J. 2019 Jul;61(4):1003-1019. doi: 10.1002/bimj.201800222. Epub 2019 Mar 14.
Missing data are ubiquitous in clinical and social research, and multiple imputation (MI) is increasingly the methodology of choice for practitioners. Two principal strategies for imputation have been proposed in the literature: joint modelling multiple imputation (JM-MI) and full conditional specification multiple imputation (FCS-MI). While JM-MI is arguably a preferable approach, because it involves specification of an explicit imputation model, FCS-MI is pragmatically appealing, because of its flexibility in handling different types of variables. JM-MI has developed from the multivariate normal model, and latent normal variables have been proposed as a natural way to extend this model to handle categorical variables. In this article, we evaluate the latent normal model through an extensive simulation study and an application on data from the German Breast Cancer Study Group, comparing the results with FCS-MI. We divide our investigation in four sections, focusing on (i) binary, (ii) categorical, (iii) ordinal, and (iv) count data. Using data simulated from both the latent normal model and the general location model, we find that in all but one extreme general location model setting JM-MI works very well, and sometimes outperforms FCS-MI. We conclude the latent normal model, implemented in the R package jomo, can be used with confidence by researchers, both for single and multilevel multiple imputation.
缺失数据在临床和社会研究中普遍存在,多重填补(MI)越来越成为从业者的首选方法。文献中提出了两种主要的填补策略:联合建模多重填补(JM-MI)和完全条件设定多重填补(FCS-MI)。虽然JM-MI可以说是一种更可取的方法,因为它涉及明确的填补模型设定,但FCS-MI在实际应用中很有吸引力,因为它在处理不同类型变量方面具有灵活性。JM-MI是从多元正态模型发展而来的,潜在正态变量已被提出作为将该模型扩展以处理分类变量的自然方式。在本文中,我们通过广泛的模拟研究和对德国乳腺癌研究组数据的应用来评估潜在正态模型,并将结果与FCS-MI进行比较。我们将研究分为四个部分,重点关注(i)二元数据、(ii)分类数据、(iii)有序数据和(iv)计数数据。使用从潜在正态模型和一般位置模型模拟的数据,我们发现除了一种极端的一般位置模型设置外,在所有情况下JM-MI都表现得非常好,有时甚至优于FCS-MI。我们得出结论,在R包jomo中实现的潜在正态模型可供研究人员放心使用,无论是用于单级还是多级多重填补。