Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Comput Math Methods Med. 2022 Jun 17;2022:2161122. doi: 10.1155/2022/2161122. eCollection 2022.
Head and neck squamous cell carcinoma (HNSCC) is one of the commonest malignant tumors. Using high-throughput genomic methods, RNA-based diagnostic and prognostic models for HNSCC with potential clinical value have been developed. However, the clinical utility and reproducibility of these models are uncertain. Because the complex regulatory processes occurring after mRNA is transcribed, the abundance of proteins in a cell can never be fully predicted or explained by their corresponding mRNA expression. We aimed to assume and verify a novel protein signature for checking the HNSCC patients' prognosis.
The functional proteomic data of 332 HNSCC cases were collected from The Cancer Proteome Atlas (TCPA), and the related follow-up and clinical data were acquired from The Cancer Genome Atlas (TCGA). This study adopted multivariate and univariate Cox regression analysis, Akaike Information Criterion, receiver operating characteristic (ROC) analysis, and Kaplan-Meier method.
Patients' clinical features in both sets were comparable (all, > 0.05). The area under the ROC curve (AUC) for the 3-protein signature (X4EBP1_pT37T46, HER3_pY1289, and NF2) in the test set was 0.655 and in the combined cohort (all 332 patients combined) was 0.699. In addition, the 3-protein signature exhibited better predictive value for the survival of HNSCC patients as in comparison with conventional clinical factors like age, gender, tumor stage, and smoking history (TNM stage).
The 3-protein signature developed in this study exhibits good performance in predicting the overall survival of with HNSCC patients. The 3-protein signature exhibited better predictive value for survival than conventional clinical factors just like gender, TNM stage, smoking history, and age.
头颈部鳞状细胞癌(HNSCC)是最常见的恶性肿瘤之一。利用高通量基因组方法,已经开发出具有潜在临床价值的基于 RNA 的 HNSCC 诊断和预后模型。然而,这些模型的临床实用性和可重复性尚不确定。由于在 mRNA 转录后会发生复杂的调控过程,因此细胞中蛋白质的丰度永远无法完全根据其相应的 mRNA 表达来预测或解释。我们旨在假设并验证一种用于检查 HNSCC 患者预后的新型蛋白质特征。
从癌症蛋白质组图谱(TCPA)中收集了 332 例 HNSCC 病例的功能蛋白质组数据,并从癌症基因组图谱(TCGA)中获取了相关的随访和临床数据。本研究采用多变量和单变量 Cox 回归分析、Akaike 信息准则、接收者操作特征(ROC)分析和 Kaplan-Meier 方法。
两个数据集的患者临床特征均具有可比性(均>0.05)。在测试集中,3 个蛋白质标志物(X4EBP1_pT37T46、HER3_pY1289 和 NF2)的 ROC 曲线下面积(AUC)为 0.655,在联合队列(所有 332 例患者)中为 0.699。此外,与年龄、性别、肿瘤分期和吸烟史等传统临床因素相比,该 3 个蛋白质标志物在预测 HNSCC 患者的生存方面表现出更好的预测价值。
本研究中开发的 3 个蛋白质标志物在预测 HNSCC 患者的总体生存率方面表现出良好的性能。与性别、TNM 分期、吸烟史和年龄等传统临床因素相比,该 3 个蛋白质标志物对生存的预测价值更高。