Suppr超能文献

基于各种物理接触网络的微观模拟方法得出的疾病传播随机性。

Stochasticity of disease spreading derived from the microscopic simulation approach for various physical contact networks.

作者信息

Tatsukawa Yuichi, Arefin Md Rajib, Utsumi Shinobu, Kuga Kazuki, Tanimoto Jun

机构信息

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka, 816-8580, Japan.

MRI Research Associates Inc., Nagata-cho, Chiyoda-ku, Tokyo, 100-0014, Japan.

出版信息

Appl Math Comput. 2022 Oct 15;431:127328. doi: 10.1016/j.amc.2022.127328. Epub 2022 Jun 21.

Abstract

COVID-19 has emphasized that a precise prediction of a disease spreading is one of the most pressing and crucial issues from a social standpoint. Although an ordinary differential equation (ODE) approach has been well established, stochastic spreading features might be hard to capture accurately. Perhaps, the most important factors adding such stochasticity are the effect of the underlying networks indicating physical contacts among individuals. The multi-agent simulation (MAS) approach works effectively to quantify the stochasticity. We systematically investigate the stochastic features of epidemic spreading on homogeneous and heterogeneous networks. The study quantitatively elucidates that a strong microscopic locality observed in one- and two-dimensional regular graphs, such as ring and lattice, leads to wide stochastic deviations in the final epidemic size (FES). The ensemble average of FES observed in this case shows substantial discrepancies with the results of ODE based mean-field approach. Unlike the regular graphs, results on heterogeneous networks, such as Erdős-Rényi random or scale-free, show less stochastic variations in FES. Also, the ensemble average of FES in heterogeneous networks seems closer to that of the mean-field result. Although the use of spatial structure is common in epidemic modeling, such fundamental results have not been well-recognized in literature. The stochastic outcomes brought by our MAS approach may lead to some implications when the authority designs social provisions to mitigate a pandemic of un-experienced infectious disease like COVID-19.

摘要

新冠疫情凸显出,从社会角度看,精确预测疾病传播是最为紧迫且关键的问题之一。尽管常微分方程(ODE)方法已得到充分确立,但随机传播特征可能难以准确捕捉。或许,增加此类随机性的最重要因素是潜在网络所体现的个体间身体接触的影响。多智能体模拟(MAS)方法能有效量化这种随机性。我们系统地研究了在同质性和异质性网络上疫情传播的随机特征。该研究定量阐明,在一维和二维规则图(如环和晶格)中观察到的强烈微观局部性,会导致最终疫情规模(FES)出现广泛的随机偏差。在这种情况下观察到的FES系综平均值与基于ODE的平均场方法的结果存在显著差异。与规则图不同,在异质性网络(如厄多斯 - 雷尼随机网络或无标度网络)上的结果显示,FES的随机变化较小。此外,异质性网络中FES的系综平均值似乎更接近平均场结果。尽管在疫情建模中使用空间结构很常见,但这些基本结果在文献中尚未得到充分认识。当当局设计社会措施以缓解像新冠疫情这样的新型传染病大流行时,我们的MAS方法所带来的随机结果可能会产生一些启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f527/9212697/755f7eec8f0c/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验