Suppr超能文献

机器学习与实验设计及其在化学工业产品创新中的应用

Machine learning and design of experiments with an application to product innovation in the chemical industry.

作者信息

Arboretti Rosa, Ceccato Riccardo, Pegoraro Luca, Salmaso Luigi, Housmekerides Chris, Spadoni Luca, Pierangelo Elisabetta, Quaggia Sara, Tveit Catherine, Vianello Sebastiano

机构信息

Department of Civil, Environmental and Architectural Engineering, Università degli Studi di Padova, Padua, Italy.

Department of Management and Engineering, Università degli Studi di Padova, Vicenza, Italy.

出版信息

J Appl Stat. 2021 Mar 26;49(10):2674-2699. doi: 10.1080/02664763.2021.1907840. eCollection 2022.

Abstract

Industrial statistics plays a major role in the areas of both quality management and innovation. However, existing methodologies must be integrated with the latest tools from the field of Artificial Intelligence. To this end, a background on the joint application of Design of Experiments (DOE) and Machine Learning (ML) methodologies in industrial settings is presented here, along with a case study from the chemical industry. A DOE study is used to collect data, and two ML models are applied to predict responses which performance show an advantage over the traditional modeling approach. Emphasis is placed on causal investigation and quantification of prediction uncertainty, as these are crucial for an assessment of the goodness and robustness of the models developed. Within the scope of the case study, the models learned can be implemented in a semi-automatic system that can assist practitioners who are inexperienced in data analysis in the process of new product development.

摘要

工业统计学在质量管理和创新领域都发挥着重要作用。然而,现有的方法必须与人工智能领域的最新工具相结合。为此,本文介绍了实验设计(DOE)和机器学习(ML)方法在工业环境中的联合应用背景,并给出了一个来自化学工业的案例研究。通过DOE研究来收集数据,并应用两个ML模型来预测响应,其性能优于传统建模方法。重点在于因果调查和预测不确定性的量化,因为这些对于评估所开发模型的优劣和稳健性至关重要。在案例研究范围内,所学习到的模型可以在半自动系统中实现,该系统可以在新产品开发过程中协助缺乏数据分析经验的从业者。

相似文献

5
Digital Pharmaceutical Sciences.数字药物科学。
AAPS PharmSciTech. 2020 Jul 26;21(6):206. doi: 10.1208/s12249-020-01747-4.
8
Design of experiments (DoE) in pharmaceutical development.药物研发中的实验设计
Drug Dev Ind Pharm. 2017 Jun;43(6):889-901. doi: 10.1080/03639045.2017.1291672. Epub 2017 Feb 23.

本文引用的文献

6
Big data: Some statistical issues.大数据:一些统计学问题。
Stat Probab Lett. 2018 May;136:111-115. doi: 10.1016/j.spl.2018.02.015.
8
Estimation and Accuracy after Model Selection.模型选择后的估计与准确性。
J Am Stat Assoc. 2014 Jul 1;109(507):991-1007. doi: 10.1080/01621459.2013.823775.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验