Suppr超能文献

BiMM树:一种用于对聚类和纵向二元结局进行建模的决策树方法。

BiMM tree: A decision tree method for modeling clustered and longitudinal binary outcomes.

作者信息

Speiser Jaime Lynn, Wolf Bethany J, Chung Dongjun, Karvellas Constantine J, Koch David G, Durkalski Valerie L

机构信息

Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC.

Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC.

出版信息

Commun Stat Simul Comput. 2020;49(4):1004-1023. doi: 10.1080/03610918.2018.1490429. Epub 2018 Sep 12.

Abstract

Clustered binary outcomes are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) for clustered endpoints have challenges for some scenarios (e.g. data with multi-way interactions and nonlinear predictors unknown ). We develop an alternative, data-driven method called Binary Mixed Model (BiMM) tree, which combines decision tree and GLMM within a unified framework. Simulation studies show that BiMM tree achieves slightly higher or similar accuracy compared to standard methods. The method is applied to a real dataset from the Acute Liver Failure Study Group.

摘要

聚类二元结局在临床研究(如纵向研究)中经常遇到。用于聚类终点的广义线性混合模型(GLMM)在某些情况下存在挑战(如具有多向交互作用和未知非线性预测变量的数据)。我们开发了一种替代的、数据驱动的方法,称为二元混合模型(BiMM)树,它在一个统一的框架内结合了决策树和GLMM。模拟研究表明,与标准方法相比,BiMM树的准确率略高或相近。该方法应用于急性肝衰竭研究组的一个真实数据集。

相似文献

引用本文的文献

6
Prediction With Mixed Effects Models: A Monte Carlo Simulation Study.混合效应模型预测:一项蒙特卡洛模拟研究。
Educ Psychol Meas. 2021 Dec;81(6):1118-1142. doi: 10.1177/0013164421992818. Epub 2021 Feb 16.

本文引用的文献

3
Bayesian inference for generalized linear mixed models.贝叶斯推断在广义线性混合模型中的应用。
Biostatistics. 2010 Jul;11(3):397-412. doi: 10.1093/biostatistics/kxp053. Epub 2009 Dec 4.
5
Acute liver failure: Summary of a workshop.急性肝衰竭:研讨会总结
Hepatology. 2008 Apr;47(4):1401-15. doi: 10.1002/hep.22177.
9
Early indicators of prognosis in fulminant hepatic failure.暴发性肝衰竭预后的早期指标
Gastroenterology. 1989 Aug;97(2):439-45. doi: 10.1016/0016-5085(89)90081-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验