Suppr超能文献

BiMM树:一种用于对聚类和纵向二元结局进行建模的决策树方法。

BiMM tree: A decision tree method for modeling clustered and longitudinal binary outcomes.

作者信息

Speiser Jaime Lynn, Wolf Bethany J, Chung Dongjun, Karvellas Constantine J, Koch David G, Durkalski Valerie L

机构信息

Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC.

Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC.

出版信息

Commun Stat Simul Comput. 2020;49(4):1004-1023. doi: 10.1080/03610918.2018.1490429. Epub 2018 Sep 12.

Abstract

Clustered binary outcomes are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) for clustered endpoints have challenges for some scenarios (e.g. data with multi-way interactions and nonlinear predictors unknown ). We develop an alternative, data-driven method called Binary Mixed Model (BiMM) tree, which combines decision tree and GLMM within a unified framework. Simulation studies show that BiMM tree achieves slightly higher or similar accuracy compared to standard methods. The method is applied to a real dataset from the Acute Liver Failure Study Group.

摘要

聚类二元结局在临床研究(如纵向研究)中经常遇到。用于聚类终点的广义线性混合模型(GLMM)在某些情况下存在挑战(如具有多向交互作用和未知非线性预测变量的数据)。我们开发了一种替代的、数据驱动的方法,称为二元混合模型(BiMM)树,它在一个统一的框架内结合了决策树和GLMM。模拟研究表明,与标准方法相比,BiMM树的准确率略高或相近。该方法应用于急性肝衰竭研究组的一个真实数据集。

相似文献

1
BiMM tree: A decision tree method for modeling clustered and longitudinal binary outcomes.
Commun Stat Simul Comput. 2020;49(4):1004-1023. doi: 10.1080/03610918.2018.1490429. Epub 2018 Sep 12.
2
BiMM forest: A random forest method for modeling clustered and longitudinal binary outcomes.
Chemometr Intell Lab Syst. 2019 Feb 15;185:122-134. doi: 10.1016/j.chemolab.2019.01.002. Epub 2019 Jan 11.
3
Predicting daily outcomes in acetaminophen-induced acute liver failure patients with machine learning techniques.
Comput Methods Programs Biomed. 2019 Jul;175:111-120. doi: 10.1016/j.cmpb.2019.04.012. Epub 2019 Apr 11.
4
A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data.
J Biomed Inform. 2021 May;117:103763. doi: 10.1016/j.jbi.2021.103763. Epub 2021 Mar 26.
5
Generalized linear mixed-model (GLMM) trees: A flexible decision-tree method for multilevel and longitudinal data.
Psychother Res. 2021 Mar;31(3):313-325. doi: 10.1080/10503307.2020.1785037. Epub 2020 Jun 30.
6
Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees.
Behav Res Methods. 2018 Oct;50(5):2016-2034. doi: 10.3758/s13428-017-0971-x.
8
A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.
J Neurosci Methods. 2016 Dec 1;274:131-140. doi: 10.1016/j.jneumeth.2016.10.005. Epub 2016 Oct 14.
10
Predictive Modeling of Microbiome Data Using a Phylogeny-Regularized Generalized Linear Mixed Model.
Front Microbiol. 2018 Jun 27;9:1391. doi: 10.3389/fmicb.2018.01391. eCollection 2018.

引用本文的文献

2
Do LUTS Predict Mortality? An Analysis Using Random Forest Algorithms.
Clin Interv Aging. 2024 Feb 12;19:237-245. doi: 10.2147/CIA.S432368. eCollection 2024.
3
Fixed Effects or Mixed Effects Classifiers? Evidence From Simulated and Archival Data.
Educ Psychol Meas. 2023 Aug;83(4):710-739. doi: 10.1177/00131644221108180. Epub 2022 Jun 30.
4
A review on longitudinal data analysis with random forest.
Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad002.
5
Machine learning and design of experiments with an application to product innovation in the chemical industry.
J Appl Stat. 2021 Mar 26;49(10):2674-2699. doi: 10.1080/02664763.2021.1907840. eCollection 2022.
6
Prediction With Mixed Effects Models: A Monte Carlo Simulation Study.
Educ Psychol Meas. 2021 Dec;81(6):1118-1142. doi: 10.1177/0013164421992818. Epub 2021 Feb 16.
7
A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data.
J Biomed Inform. 2021 May;117:103763. doi: 10.1016/j.jbi.2021.103763. Epub 2021 Mar 26.
8
BiMM forest: A random forest method for modeling clustered and longitudinal binary outcomes.
Chemometr Intell Lab Syst. 2019 Feb 15;185:122-134. doi: 10.1016/j.chemolab.2019.01.002. Epub 2019 Jan 11.
9
Predicting daily outcomes in acetaminophen-induced acute liver failure patients with machine learning techniques.
Comput Methods Programs Biomed. 2019 Jul;175:111-120. doi: 10.1016/j.cmpb.2019.04.012. Epub 2019 Apr 11.

本文引用的文献

1
Development of a Model to Predict Transplant-free Survival of Patients With Acute Liver Failure.
Clin Gastroenterol Hepatol. 2016 Aug;14(8):1199-1206.e2. doi: 10.1016/j.cgh.2016.03.046. Epub 2016 Apr 13.
2
Comments on Fifty Years of Classification and Regression Trees.
Int Stat Rev. 2014 Dec 1;82(3):359-361. doi: 10.1111/insr.12060.
3
Bayesian inference for generalized linear mixed models.
Biostatistics. 2010 Jul;11(3):397-412. doi: 10.1093/biostatistics/kxp053. Epub 2009 Dec 4.
4
The importance of immune dysfunction in determining outcome in acute liver failure.
J Hepatol. 2008 Nov;49(5):845-61. doi: 10.1016/j.jhep.2008.08.009. Epub 2008 Aug 21.
5
Acute liver failure: Summary of a workshop.
Hepatology. 2008 Apr;47(4):1401-15. doi: 10.1002/hep.22177.
6
Intensive care of patients with acute liver failure: recommendations of the U.S. Acute Liver Failure Study Group.
Crit Care Med. 2007 Nov;35(11):2498-508. doi: 10.1097/01.CCM.0000287592.94554.5F.
7
Model for end-stage liver disease (MELD) and allocation of donor livers.
Gastroenterology. 2003 Jan;124(1):91-6. doi: 10.1053/gast.2003.50016.
8
Binary partitioning for continuous longitudinal data: categorizing a prognostic variable.
Stat Med. 2002 Nov 30;21(22):3395-409. doi: 10.1002/sim.1266.
9
Early indicators of prognosis in fulminant hepatic failure.
Gastroenterology. 1989 Aug;97(2):439-45. doi: 10.1016/0016-5085(89)90081-4.
10
[Fulminant and subfulminant viral hepatitis].
Rev Prat. 1990 Jun 21;40(18):1652-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验