Suppr超能文献

相似文献

1
Clinical time-to-event prediction enhanced by incorporating compatible related outcomes.
PLOS Digit Health. 2022;1(5). doi: 10.1371/journal.pdig.0000038. Epub 2022 May 26.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
Considerations for analysis of time-to-event outcomes subject to competing risks in veterinary clinical studies.
J Vet Cardiol. 2018 Jun;20(3):143-153. doi: 10.1016/j.jvc.2018.03.001. Epub 2018 Apr 18.
4
A new approach for interpretability and reliability in clinical risk prediction: Acute coronary syndrome scenario.
Artif Intell Med. 2021 Jul;117:102113. doi: 10.1016/j.artmed.2021.102113. Epub 2021 May 13.
7
A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction.
J Bioinform Comput Biol. 2018 Jun;16(3):1840014. doi: 10.1142/S0219720018400140.
9
Leveraging auxiliary measures: a deep multi-task neural network for predictive modeling in clinical research.
BMC Med Inform Decis Mak. 2018 Dec 12;18(Suppl 4):126. doi: 10.1186/s12911-018-0676-9.

引用本文的文献

2
Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective.
Annu Rev Biomed Data Sci. 2023 Aug 10;6:153-171. doi: 10.1146/annurev-biodatasci-020722-020704. Epub 2023 Apr 27.

本文引用的文献

1
On Interpretability of Artificial Neural Networks: A Survey.
IEEE Trans Radiat Plasma Med Sci. 2021 Nov;5(6):741-760. doi: 10.1109/trpms.2021.3066428. Epub 2021 Mar 17.
2
Transfer Learning for High-Dimensional Linear Regression: Prediction, Estimation and Minimax Optimality.
J R Stat Soc Series B Stat Methodol. 2022 Feb;84(1):149-173. doi: 10.1111/rssb.12479. Epub 2021 Nov 16.
3
Deep learning in cancer diagnosis, prognosis and treatment selection.
Genome Med. 2021 Sep 27;13(1):152. doi: 10.1186/s13073-021-00968-x.
5
Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned?
J Med Ethics. 2022 Sep;48(9):581-585. doi: 10.1136/medethics-2020-107102. Epub 2021 May 18.
6
Cox-nnet v2.0: improved neural-network-based survival prediction extended to large-scale EMR data.
Bioinformatics. 2021 Sep 9;37(17):2772-2774. doi: 10.1093/bioinformatics/btab046.
7
Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data With Competing Risks.
IEEE J Biomed Health Inform. 2021 Aug;25(8):3163-3175. doi: 10.1109/JBHI.2021.3052441. Epub 2021 Aug 5.
8
A meta-learning approach for genomic survival analysis.
Nat Commun. 2020 Dec 11;11(1):6350. doi: 10.1038/s41467-020-20167-3.
9
Deep transfer learning for reducing health care disparities arising from biomedical data inequality.
Nat Commun. 2020 Oct 12;11(1):5131. doi: 10.1038/s41467-020-18918-3.
10
Development and Validation of a Deep Learning Model for Non-Small Cell Lung Cancer Survival.
JAMA Netw Open. 2020 Jun 1;3(6):e205842. doi: 10.1001/jamanetworkopen.2020.5842.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验