Suppr超能文献

一种通过普罗克汝斯分析和均值漂移进行癌症药物敏感性预测的迁移学习方法。

A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction.

作者信息

Turki Turki, Wei Zhi, Wang Jason T L

机构信息

* Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

† Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.

出版信息

J Bioinform Comput Biol. 2018 Jun;16(3):1840014. doi: 10.1142/S0219720018400140.

Abstract

Transfer learning (TL) algorithms aim to improve the prediction performance in a target task (e.g. the prediction of cisplatin sensitivity in triple-negative breast cancer patients) via transferring knowledge from auxiliary data of a related task (e.g. the prediction of docetaxel sensitivity in breast cancer patients), where the distribution and even the feature space of the data pertaining to the tasks can be different. In real-world applications, we sometimes have a limited training set in a target task while we have auxiliary data from a related task. To obtain a better prediction performance in the target task, supervised learning requires a sufficiently large training set in the target task to perform well in predicting future test examples of the target task. In this paper, we propose a TL approach for cancer drug sensitivity prediction, where our approach combines three techniques. First, we shift the representation of a subset of examples from auxiliary data of a related task to a representation closer to a target training set of a target task. Second, we align the shifted representation of the selected examples of the auxiliary data to the target training set to obtain examples with representation aligned to the target training set. Third, we train machine learning algorithms using both the target training set and the aligned examples. We evaluate the performance of our approach against baseline approaches using the Area Under the receiver operating characteristic (ROC) Curve (AUC) on real clinical trial datasets pertaining to multiple myeloma, nonsmall cell lung cancer, triple-negative breast cancer, and breast cancer. Experimental results show that our approach is better than the baseline approaches in terms of performance and statistical significance.

摘要

迁移学习(TL)算法旨在通过从相关任务的辅助数据(例如乳腺癌患者多西他赛敏感性的预测)中转移知识,来提高目标任务(例如三阴性乳腺癌患者顺铂敏感性的预测)的预测性能,其中与这些任务相关的数据的分布甚至特征空间可能不同。在实际应用中,我们有时在目标任务中的训练集有限,而我们有来自相关任务的辅助数据。为了在目标任务中获得更好的预测性能,监督学习需要在目标任务中有足够大的训练集,以便在预测目标任务的未来测试示例时表现良好。在本文中,我们提出了一种用于癌症药物敏感性预测的迁移学习方法,我们的方法结合了三种技术。首先,我们将相关任务辅助数据中一部分示例的表示转移到更接近目标任务目标训练集的表示。其次,我们将辅助数据中所选示例的转移表示与目标训练集对齐,以获得表示与目标训练集对齐的示例。第三,我们使用目标训练集和对齐后的示例来训练机器学习算法。我们使用受试者操作特征(ROC)曲线下面积(AUC),在与多发性骨髓瘤、非小细胞肺癌、三阴性乳腺癌和乳腺癌相关的真实临床试验数据集上,将我们的方法与基线方法的性能进行评估。实验结果表明,我们的方法在性能和统计显著性方面优于基线方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验