文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合网络药理学与实验验证探索芦荟素抗胃癌的药理机制。

Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Aloin Against Gastric Cancer.

机构信息

The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.

Medical Oncology Department, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, People's Republic of China.

出版信息

Drug Des Devel Ther. 2022 Jun 20;16:1947-1961. doi: 10.2147/DDDT.S360790. eCollection 2022.


DOI:10.2147/DDDT.S360790
PMID:35757520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9232097/
Abstract

PURPOSE: This study was designed to evaluate the pharmacological mechanisms of Aloin against gastric cancer (GC) via network pharmacology analysis combined with experimental verification. METHODS: Using network pharmacology methods, the potential targets of Aloin and targets related to GC were screened from public databases. The protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to predict the core targets and pathways of Aloin against GC. The expressions of major targets predicted by network pharmacology in normal stomach tissues and GC tissues and their relationships with overall survival of GC were searched in GEPIA, HPA and DriverDBv3 database. The results of network pharmacology analysis were verified by in vitro experiments. RESULTS: A total of 129 potential targets were retrieved by searching the intersection of Aloin and GC targets. PPI network analysis indicated that 10 targets, including AKT1 and CASP3, were hub genes. GO enrichment analysis involved 93 biological processes, 19 cellular components, and 37 molecular functions. KEGG enrichment analysis indicated that the anti-cancer effect of Aloin was mediated through multiple pathways, such as PI3K-AKT, FoxO and Ras signaling pathway. Among them, the PI3K-AKT signaling pathway, which contained the largest number of enriched genes, may play a greater role in the treatment of GC. The validation of key targets in GEPIA, HPA and DriverDBv3 database showed that the verification results for most core genes were consistent with this study. Then, the results of in vitro experiment indicated that Aloin could inhibit proliferation of NCI-N87 cells and induce cell apoptosis. The results also showed that Aloin could decrease the mRNA and protein expressions of PI3K and AKT, suggesting that Aloin can treat GC by inducing cell apoptosis and regulating the PI3K-AKT signaling pathway. CONCLUSION: This study identified the potential targets of Aloin against GC using network pharmacology and in vitro verification, which provided a new understanding of the pharmacological mechanisms of Aloin in treatment of GC.

摘要

目的:本研究旨在通过网络药理学分析结合实验验证,评估芦荟素对胃癌(GC)的药理机制。

方法:利用网络药理学方法,从公共数据库中筛选出芦荟素的潜在靶点和与 GC 相关的靶点。对蛋白-蛋白相互作用(PPI)网络、基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集分析,预测芦荟素治疗 GC 的核心靶点和通路。在 GEPIA、HPA 和 DriverDBv3 数据库中搜索网络药理学预测的主要靶点在正常胃组织和 GC 组织中的表达及其与 GC 总生存的关系。通过体外实验验证网络药理学分析的结果。

结果:通过搜索芦荟素和 GC 靶点的交集,共检索到 129 个潜在靶点。PPI 网络分析表明,AKT1 和 CASP3 等 10 个靶标为枢纽基因。GO 富集分析涉及 93 个生物过程、19 个细胞成分和 37 个分子功能。KEGG 富集分析表明,芦荟素的抗癌作用是通过多种途径介导的,如 PI3K-AKT、FoxO 和 Ras 信号通路。其中,PI3K-AKT 信号通路富集的基因数量最多,可能在 GC 治疗中发挥更大作用。在 GEPIA、HPA 和 DriverDBv3 数据库中对关键靶点的验证表明,大多数核心基因的验证结果与本研究一致。然后,体外实验结果表明,芦荟素可以抑制 NCI-N87 细胞的增殖并诱导细胞凋亡。结果还表明,芦荟素可以降低 PI3K 和 AKT 的 mRNA 和蛋白表达,提示芦荟素可以通过诱导细胞凋亡和调节 PI3K-AKT 信号通路来治疗 GC。

结论:本研究通过网络药理学和体外验证鉴定了芦荟素治疗 GC 的潜在靶点,为芦荟素治疗 GC 的药理机制提供了新的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/f34ce97dfdd5/DDDT-16-1947-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/f553ee1c7ad3/DDDT-16-1947-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/0c5fb8098f56/DDDT-16-1947-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/41234bc640f2/DDDT-16-1947-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/ce88d666fe04/DDDT-16-1947-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/4279772a387e/DDDT-16-1947-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/5a80a845b65f/DDDT-16-1947-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/e5dbd996ef05/DDDT-16-1947-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/cdabfdce2c0d/DDDT-16-1947-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/03d3b318e6ac/DDDT-16-1947-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/167c9802999b/DDDT-16-1947-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/c996c89259c4/DDDT-16-1947-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/f34ce97dfdd5/DDDT-16-1947-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/f553ee1c7ad3/DDDT-16-1947-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/0c5fb8098f56/DDDT-16-1947-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/41234bc640f2/DDDT-16-1947-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/ce88d666fe04/DDDT-16-1947-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/4279772a387e/DDDT-16-1947-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/5a80a845b65f/DDDT-16-1947-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/e5dbd996ef05/DDDT-16-1947-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/cdabfdce2c0d/DDDT-16-1947-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/03d3b318e6ac/DDDT-16-1947-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/167c9802999b/DDDT-16-1947-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/c996c89259c4/DDDT-16-1947-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640c/9232097/f34ce97dfdd5/DDDT-16-1947-g0012.jpg

相似文献

[1]
Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Aloin Against Gastric Cancer.

Drug Des Devel Ther. 2022

[2]
Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification.

J Ethnopharmacol. 2021-10-28

[3]
The Role of Emodin in the Treatment of Bladder Cancer Based on Network Pharmacology and Experimental Verification.

Comb Chem High Throughput Screen. 2024

[4]
A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway.

J Ethnopharmacol. 2023-3-1

[5]
Network pharmacology and experimental verification based research into the effect and mechanism of Aucklandiae Radix-Amomi Fructus against gastric cancer.

Sci Rep. 2022-6-7

[6]
Exploring the Potential Mechanism of Action of Ursolic Acid against Gastric Cancer and COVID-19 using Network Pharmacology and Bioinformatics Analysis.

Curr Pharm Des. 2023

[7]
Elucidating the mechanism of action of Isobavachalcone induced autophagy and apoptosis in non-small cell lung cancer by network pharmacology and experimental validation methods.

Gene. 2024-8-5

[8]
Exploration of the Effect and Potential Mechanism of Echinacoside Against Endometrial Cancer Based on Network Pharmacology and in vitro Experimental Verification.

Drug Des Devel Ther. 2022

[9]
Exploring the mechanism of Erteng-Sanjie capsule in treating gastric and colorectal cancers via network pharmacology and in-vivo validation.

J Ethnopharmacol. 2024-6-12

[10]
Exploring the effect and mechanism of Aloin A against cancer cachexia-induced muscle atrophy via network pharmacology, molecular docking, molecular dynamics and experimental validation.

Aging (Albany NY). 2023-12-29

引用本文的文献

[1]
Exploration of the antitumor effect and mechanism of gambogic acid on osteosarcoma through network pharmacology and experimental pharmacology study.

Sci Rep. 2025-7-1

[2]
Clinical significance of cyclin-dependent kinase inhibitor 3 in hepatocellular carcinoma.

Mol Clin Oncol. 2025-5-22

[3]
Combining network pharmacology and experimental verification to explore the inhibitory effects of Deoxyelephantopin (DET) Against Non-Small Cell Lung Cancer (NSCLC).

BMC Cancer. 2025-4-21

[4]
Network Pharmacology, Molecular Docking, and in vitro Experiments Reveal the Role and Mechanism of Tanshinone IIA in Colorectal Cancer Treatment Through the PI3K/AKT Pathway.

Drug Des Devel Ther. 2025-4-16

[5]
Effect and Mechanism of Aloin in Ameliorating Chronic Prostatitis/Chronic Pelvic Pain Syndrome: Network Pharmacology and Experimental Verification.

Drug Des Devel Ther. 2025-3-14

[6]
Network pharmacology and experimental validation reveal dexmedetomidine's protective mechanisms against acute liver injury in mice.

Sci Rep. 2025-3-17

[7]
The essential roles of lncRNAs/PI3K/AKT axis in gastrointestinal tumors.

Front Cell Dev Biol. 2024-8-5

[8]
-An Extensive Review Focused on Recent Studies.

Foods. 2024-7-8

[9]
Mechanisms of QiShenYiQi in Inhibiting Blood-Brain Barrier Damage Following Stroke: A Network Pharmacology and Experimental Study.

Comb Chem High Throughput Screen. 2024-6-6

[10]
Exploration of the Molecular Mechanism of Salisb's Anticolorectal Cancer Activity via the Integrative Approach of Network Pharmacology and Experimental Validation.

ACS Omega. 2024-5-1

本文引用的文献

[1]
Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification.

J Ethnopharmacol. 2021-10-28

[2]
Knockdown of lncRNA ZNRD1-AS1 suppresses gastric cancer cell proliferation and metastasis by targeting the miR-9-5p/HSP90AA1 axis.

Aging (Albany NY). 2021-7-2

[3]
SRC Signaling in Cancer and Tumor Microenvironment.

Adv Exp Med Biol. 2021

[4]
Aloin promotes cell apoptosis by targeting HMGB1-TLR4-ERK axis in human melanoma cells.

EXCLI J. 2020-5-14

[5]
ERK/MAPK signalling pathway and tumorigenesis.

Exp Ther Med. 2020-3

[6]
Aloin Inhibits the Proliferation and Migration of Gastric Cancer Cells by Regulating NOX2-ROS-Mediated Pro-Survival Signal Pathways.

Drug Des Devel Ther. 2020-1-14

[7]
Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways.

Crit Rev Food Sci Nutr. 2020-1-3

[8]
Combination of aloin and metformin enhances the antitumor effect by inhibiting the growth and invasion and inducing apoptosis and autophagy in hepatocellular carcinoma through PI3K/AKT/mTOR pathway.

Cancer Med. 2020-2

[9]
Apatinib suppresses the Proliferation and Apoptosis of Gastric Cancer Cells via the PI3K/Akt Signaling Pathway.

J BUON. 2019

[10]
The molecular mechanisms of Aloin induce gastric cancer cells apoptosis by targeting High Mobility Group Box 1.

Drug Des Devel Ther. 2019-4-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索