Suppr超能文献

基于全基因组关联研究汇总统计量的遗传相关性估计

On Genetic Correlation Estimation With Summary Statistics From Genome-Wide Association Studies.

作者信息

Zhao Bingxin, Zhu Hongtu

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, NC.

出版信息

J Am Stat Assoc. 2022;117(537):1-11. doi: 10.1080/01621459.2021.1906684. Epub 2021 May 19.

Abstract

Cross-trait polygenic risk score (PRS) method has gained popularity for assessing genetic correlation of complex traits using summary statistics from biobank-scale genome-wide association studies (GWAS). However, empirical evidence has shown a common bias phenomenon that highly significant cross-trait PRS can only account for a very small amount of genetic variance ( can be < 1%) in independent testing GWAS. The aim of this paper is to investigate and address the bias phenomenon of cross-trait PRS in numerous GWAS applications. We show that the estimated genetic correlation can be asymptotically biased toward zero. A consistent cross-trait PRS estimator is then proposed to correct such asymptotic bias. In addition, we investigate whether or not SNP screening by GWAS -values can lead to improved estimation and show the effect of overlapping samples among GWAS. We analyze GWAS summary statistics of reaction time and brain structural magnetic resonance imaging-based features measured in the Pediatric Imaging, Neurocognition, and Genetics study. We find that the raw cross-trait PRS estimators heavily underestimate the genetic similarity between cognitive function and human brain structures (mean = 1.32%), whereas the bias-corrected estimators uncover the moderate degree of genetic overlap between these closely related heritable traits (mean = 22.42%). Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

摘要

跨性状多基因风险评分(PRS)方法已广泛用于利用生物样本库规模的全基因组关联研究(GWAS)的汇总统计数据评估复杂性状的遗传相关性。然而,实证证据表明存在一种常见的偏差现象,即高度显著的跨性状PRS在独立测试的GWAS中只能解释非常少量的遗传方差(可能<1%)。本文的目的是研究并解决跨性状PRS在众多GWAS应用中的偏差现象。我们表明,估计的遗传相关性可能会渐近地偏向于零。然后提出了一种一致的跨性状PRS估计器来纠正这种渐近偏差。此外,我们研究了通过GWAS的P值进行单核苷酸多态性(SNP)筛选是否能改善估计,并展示了GWAS之间样本重叠的影响。我们分析了儿科成像、神经认知和遗传学研究中测量的反应时间以及基于脑结构磁共振成像的特征的GWAS汇总统计数据。我们发现,原始的跨性状PRS估计器严重低估了认知功能与人类脑结构之间的遗传相似性(平均r = 1.32%),而经过偏差校正的估计器揭示了这些密切相关的可遗传性状之间适度的遗传重叠程度(平均r = 22.42%)。本文的补充材料,包括可用于重现该工作的材料的标准化描述,可作为在线补充材料获取。

相似文献

引用本文的文献

2
Controlling the False Split Rate in Tree-Based Aggregation.控制基于树的聚合中的误分裂率。
J Am Stat Assoc. 2025;120(550):935-947. doi: 10.1080/01621459.2024.2376285. Epub 2024 Sep 24.
4
Neural networks for geospatial data.用于地理空间数据的神经网络。
J Am Stat Assoc. 2025;120(549):535-547. doi: 10.1080/01621459.2024.2356293. Epub 2024 Jun 24.
9
Joint and Individual Component Regression.联合与个体成分回归
J Comput Graph Stat. 2024;33(3):763-773. doi: 10.1080/10618600.2023.2284227. Epub 2023 Dec 29.
10
Estimating trans-ancestry genetic correlation with unbalanced data resources.利用不平衡数据资源估计跨祖先遗传相关性。
J Am Stat Assoc. 2024;119(546):839-850. doi: 10.1080/01621459.2024.2344703. Epub 2024 May 21.

本文引用的文献

1
Optimal Estimation of Genetic Relatedness in High-dimensional Linear Models.高维线性模型中遗传相关性的最优估计
J Am Stat Assoc. 2019;114(525):358-369. doi: 10.1080/01621459.2017.1407774. Epub 2018 Nov 19.
2
7
The Cognitive Thalamus as a Gateway to Mental Representations.丘脑作为心理表象的门户。
J Neurosci. 2019 Jan 2;39(1):3-14. doi: 10.1523/JNEUROSCI.0479-18.2018. Epub 2018 Nov 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验