Suppr超能文献

用于微生物群落检测的广义贝叶斯随机块模型

A Generalized Bayesian Stochastic Block Model for Microbiome Community Detection.

作者信息

Lutz Kevin C, Neugent Michael L, Bedi Tejasv, De Nisco Nicole J, Li Qiwei

机构信息

Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas.

Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas.

出版信息

Stat Med. 2025 Feb 10;44(3-4):e10291. doi: 10.1002/sim.10291.

Abstract

Advances in next-generation sequencing technology have enabled the high-throughput profiling of metagenomes and accelerated microbiome studies. Recently, there has been a rise in quantitative studies that aim to decipher the microbiome co-occurrence network and its underlying community structure based on metagenomic sequence data. Uncovering the complex microbiome community structure is essential to understanding the role of the microbiome in disease progression and susceptibility. Taxonomic abundance data generated from metagenomic sequencing technologies are high-dimensional and compositional, suffering from uneven sampling depth, over-dispersion, and zero-inflation. These characteristics often challenge the reliability of the current methods for microbiome community detection. To study the microbiome co-occurrence network and perform community detection, we propose a generalized Bayesian stochastic block model that is tailored for microbiome data analysis where the data are transformed using the recently developed modified centered-log ratio transformation. Our model also allows us to leverage taxonomic tree information using a Markov random field prior. The model parameters are jointly inferred by using Markov chain Monte Carlo sampling techniques. Our simulation study showed that the proposed approach performs better than competing methods even when taxonomic tree information is non-informative. We applied our approach to a real urinary microbiome dataset from postmenopausal women. To the best of our knowledge, this is the first time the urinary microbiome co-occurrence network structure in postmenopausal women has been studied. In summary, this statistical methodology provides a new tool for facilitating advanced microbiome studies.

摘要

下一代测序技术的进步使得宏基因组的高通量分析成为可能,并加速了微生物组研究。最近,旨在基于宏基因组序列数据破译微生物组共现网络及其潜在群落结构的定量研究有所增加。揭示复杂的微生物组群落结构对于理解微生物组在疾病进展和易感性中的作用至关重要。宏基因组测序技术生成的分类丰度数据具有高维度和组成性,存在采样深度不均匀、过度离散和零膨胀等问题。这些特性常常挑战当前微生物组群落检测方法的可靠性。为了研究微生物组共现网络并进行群落检测,我们提出了一种广义贝叶斯随机块模型,该模型是为微生物组数据分析量身定制的,其中数据使用最近开发的修正中心对数比变换进行转换。我们的模型还允许我们使用马尔可夫随机场先验来利用分类树信息。通过使用马尔可夫链蒙特卡罗采样技术联合推断模型参数。我们的模拟研究表明,即使分类树信息不提供信息,所提出的方法也比竞争方法表现更好。我们将我们的方法应用于来自绝经后妇女的真实尿液微生物组数据集。据我们所知,这是首次对绝经后妇女尿液微生物组共现网络结构进行研究。总之,这种统计方法为促进高级微生物组研究提供了一种新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f56/11760646/3df8d64a9d81/SIM-44-0-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验