Suppr超能文献

利用注册表数据和卷积神经网络在 5 年内预测黑色素瘤:概念验证研究。

Ability to Predict Melanoma Within 5 Years Using Registry Data and a Convolutional Neural Network: A Proof of Concept Study.

机构信息

Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden.

出版信息

Acta Derm Venereol. 2022 Jul 13;102:adv00750. doi: 10.2340/actadv.v102.2028.

Abstract

Research relating to machine learning algorithms, including convolutional neural networks, has increased during the past 5 years. The aim of this pilot study was to investigate how accurately a convolutional neural network, trained on Swedish registry data, could perform in predicting cutaneous invasive and in situ melanoma (CMM) within 5 years. A cohort of 1,208,393 individuals was used. Registry data ranged from 4 July 2005 to 31 December 2011, predicting CMM between 1 January 2012 and 31 December 2016. A convolutional neural network with one-dimensional convolutions with respect to time was trained using healthcare databases and registers. The algorithm was trained on 23,886 individuals. Validation was performed on a holdout validation set including 6,000 individuals. After training and validation, the convolutional neural network was evaluated on a test set (1,000 individuals with an CMM occurring within 5 years and 5,000 without). The area under the receiver-operating characteristic curve was 0.59 (95% confidence interval (95% CI) 0.57-0.61). The point on the receiver-operating characteristic curve where sensitivity equalled specificity had a value of 56% (sensitivity 95% CI 53-60% and specificity 95% CI 55-58%). Albeit at an early stage, this pilot investigation demonstrates potential usefulness for machine learning algorithms in predicting melanoma risk.

摘要

在过去的 5 年中,与机器学习算法相关的研究(包括卷积神经网络)有所增加。本试点研究的目的是调查在瑞典注册数据上进行训练的卷积神经网络在预测 5 年内皮肤浸润性和原位黑色素瘤(CMM)方面的准确性。使用了一个包含 1208393 人的队列。登记数据的范围从 2005 年 7 月 4 日至 2011 年 12 月 31 日,预测 2012 年 1 月 1 日至 2016 年 12 月 31 日之间的 CMM。使用医疗保健数据库和登记处对一维时间卷积的卷积神经网络进行了训练。该算法在 23886 个人身上进行了训练。在包括 6000 个人的保留验证集上进行了验证。在训练和验证之后,在一个测试集(1000 名在 5 年内发生 CMM 的个体和 5000 名没有发生 CMM 的个体)上评估了卷积神经网络。接收器工作特性曲线下的面积为 0.59(95%置信区间[95%CI]为 0.57-0.61)。接收器工作特性曲线上灵敏度等于特异性的点的值为 56%(灵敏度 95%CI 为 53-60%,特异性 95%CI 为 55-58%)。尽管处于早期阶段,但这项试点研究表明机器学习算法在预测黑色素瘤风险方面具有潜在的用处。

相似文献

4
Convolutional Neural Network Using a Breast MRI Tumor Dataset Can Predict Oncotype Dx Recurrence Score.
J Magn Reson Imaging. 2019 Feb;49(2):518-524. doi: 10.1002/jmri.26244. Epub 2018 Aug 21.
5
Response predictor for pigment reduction after one session of photo-based therapy using convolutional neural network: A proof of concept study.
Photodermatol Photoimmunol Photomed. 2023 Sep;39(5):498-505. doi: 10.1111/phpp.12891. Epub 2023 Jun 12.
6
Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning.
J Thorac Cardiovasc Surg. 2022 Apr;163(4):1496-1505.e10. doi: 10.1016/j.jtcvs.2021.02.010. Epub 2021 Feb 16.
9
Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry?
Clin Orthop Relat Res. 2020 Sep;478(9):2088-2101. doi: 10.1097/CORR.0000000000001343.

引用本文的文献

2
Heterogeneity among melanoma databases and challenges in sustainability: A survey of the Melanoma Prevention Working Group.
JAAD Int. 2024 Feb 9;18:137-139. doi: 10.1016/j.jdin.2024.02.001. eCollection 2025 Feb.
3
Machine learning in healthcare citizen science: A scoping review.
Int J Med Inform. 2025 Mar;195:105766. doi: 10.1016/j.ijmedinf.2024.105766. Epub 2024 Dec 19.

本文引用的文献

2
Artificial Intelligence in Cutaneous Oncology.
Front Med (Lausanne). 2020 Jul 10;7:318. doi: 10.3389/fmed.2020.00318. eCollection 2020.
3
Review of Machine Learning in Predicting Dermatological Outcomes.
Front Med (Lausanne). 2020 Jun 12;7:266. doi: 10.3389/fmed.2020.00266. eCollection 2020.
4
Application of Basic Epidemiologic Principles and Electronic Health Records in a Deep Learning Prediction Model.
JAMA Dermatol. 2020 Apr 1;156(4):473-474. doi: 10.1001/jamadermatol.2019.4922.
5
Application of Basic Epidemiologic Principles and Electronic Health Records in a Deep Learning Prediction Model.
JAMA Dermatol. 2020 Apr 1;156(4):472-473. doi: 10.1001/jamadermatol.2019.4919.
6
Methotrexate treatment for patients with psoriasis and risk of cutaneous melanoma: a nested case-control study.
Br J Dermatol. 2020 Oct;183(4):684-691. doi: 10.1111/bjd.18887. Epub 2020 Mar 4.
8
Pathology Image Analysis Using Segmentation Deep Learning Algorithms.
Am J Pathol. 2019 Sep;189(9):1686-1698. doi: 10.1016/j.ajpath.2019.05.007. Epub 2019 Jun 11.
9
Efficient learning from big data for cancer risk modeling: A case study with melanoma.
Comput Biol Med. 2019 Jul;110:29-39. doi: 10.1016/j.compbiomed.2019.04.039. Epub 2019 Apr 30.
10
Reporting of artificial intelligence prediction models.
Lancet. 2019 Apr 20;393(10181):1577-1579. doi: 10.1016/S0140-6736(19)30037-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验