Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.
Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.
Am J Pathol. 2019 Sep;189(9):1686-1698. doi: 10.1016/j.ajpath.2019.05.007. Epub 2019 Jun 11.
With the rapid development of image scanning techniques and visualization software, whole slide imaging (WSI) is becoming a routine diagnostic method. Accelerating clinical diagnosis from pathology images and automating image analysis efficiently and accurately remain significant challenges. Recently, deep learning algorithms have shown great promise in pathology image analysis, such as in tumor region identification, metastasis detection, and patient prognosis. Many machine learning algorithms, including convolutional neural networks, have been proposed to automatically segment pathology images. Among these algorithms, segmentation deep learning algorithms such as fully convolutional networks stand out for their accuracy, computational efficiency, and generalizability. Thus, deep learning-based pathology image segmentation has become an important tool in WSI analysis. In this review, the pathology image segmentation process using deep learning algorithms is described in detail. The goals are to provide quick guidance for implementing deep learning into pathology image analysis and to provide some potential ways of further improving segmentation performance. Although there have been previous reviews on using machine learning methods in digital pathology image analysis, this is the first in-depth review of the applications of deep learning algorithms for segmentation in WSI analysis.
随着图像扫描技术和可视化软件的快速发展,全玻片成像(WSI)正成为一种常规的诊断方法。从病理图像中加速临床诊断并有效地、准确地实现图像分析自动化仍然是重大挑战。最近,深度学习算法在病理图像分析中显示出巨大的潜力,例如在肿瘤区域识别、转移检测和患者预后方面。已经提出了许多机器学习算法,包括卷积神经网络,以自动分割病理图像。在这些算法中,分割深度学习算法,如全卷积网络,因其准确性、计算效率和通用性而脱颖而出。因此,基于深度学习的病理图像分割已成为 WSI 分析的重要工具。在这篇综述中,详细描述了使用深度学习算法进行病理图像分割的过程。目标是为将深度学习应用于病理图像分析提供快速指导,并为进一步提高分割性能提供一些潜在的方法。尽管之前已经有关于使用机器学习方法进行数字病理图像分析的综述,但这是第一篇关于深度学习算法在 WSI 分析中用于分割的深入综述。
Am J Pathol. 2019-6-11
Semin Cancer Biol. 2021-7
Med Image Anal. 2017-7-26
Sichuan Da Xue Xue Bao Yi Xue Ban. 2021-9
IEEE Trans Neural Netw Learn Syst. 2017-11-22
BMC Med Inform Decis Mak. 2024-10-7
J Med Syst. 2018-10-8
J Med Imaging (Bellingham). 2025-11
BMC Public Health. 2025-6-7
Comput Struct Biotechnol J. 2018-2-9
IEEE J Biomed Health Inform. 2017-12-25
BMC Bioinformatics. 2018-2-27
IEEE Trans Pattern Anal Mach Intell. 2017-4-27
Neurocomputing (Amst). 2016-5-26