文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于分割深度学习算法的病理学图像分析。

Pathology Image Analysis Using Segmentation Deep Learning Algorithms.

机构信息

Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.

Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.

出版信息

Am J Pathol. 2019 Sep;189(9):1686-1698. doi: 10.1016/j.ajpath.2019.05.007. Epub 2019 Jun 11.


DOI:10.1016/j.ajpath.2019.05.007
PMID:31199919
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6723214/
Abstract

With the rapid development of image scanning techniques and visualization software, whole slide imaging (WSI) is becoming a routine diagnostic method. Accelerating clinical diagnosis from pathology images and automating image analysis efficiently and accurately remain significant challenges. Recently, deep learning algorithms have shown great promise in pathology image analysis, such as in tumor region identification, metastasis detection, and patient prognosis. Many machine learning algorithms, including convolutional neural networks, have been proposed to automatically segment pathology images. Among these algorithms, segmentation deep learning algorithms such as fully convolutional networks stand out for their accuracy, computational efficiency, and generalizability. Thus, deep learning-based pathology image segmentation has become an important tool in WSI analysis. In this review, the pathology image segmentation process using deep learning algorithms is described in detail. The goals are to provide quick guidance for implementing deep learning into pathology image analysis and to provide some potential ways of further improving segmentation performance. Although there have been previous reviews on using machine learning methods in digital pathology image analysis, this is the first in-depth review of the applications of deep learning algorithms for segmentation in WSI analysis.

摘要

随着图像扫描技术和可视化软件的快速发展,全玻片成像(WSI)正成为一种常规的诊断方法。从病理图像中加速临床诊断并有效地、准确地实现图像分析自动化仍然是重大挑战。最近,深度学习算法在病理图像分析中显示出巨大的潜力,例如在肿瘤区域识别、转移检测和患者预后方面。已经提出了许多机器学习算法,包括卷积神经网络,以自动分割病理图像。在这些算法中,分割深度学习算法,如全卷积网络,因其准确性、计算效率和通用性而脱颖而出。因此,基于深度学习的病理图像分割已成为 WSI 分析的重要工具。在这篇综述中,详细描述了使用深度学习算法进行病理图像分割的过程。目标是为将深度学习应用于病理图像分析提供快速指导,并为进一步提高分割性能提供一些潜在的方法。尽管之前已经有关于使用机器学习方法进行数字病理图像分析的综述,但这是第一篇关于深度学习算法在 WSI 分析中用于分割的深入综述。

相似文献

[1]
Pathology Image Analysis Using Segmentation Deep Learning Algorithms.

Am J Pathol. 2019-6-11

[2]
Deep computational pathology in breast cancer.

Semin Cancer Biol. 2021-7

[3]
A Deep Learning Approach for Histology-Based Nucleus Segmentation and Tumor Microenvironment Characterization.

Mod Pathol. 2023-8

[4]
Variability and reproducibility in deep learning for medical image segmentation.

Sci Rep. 2020-8-13

[5]
The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

Comput Biol Med. 2021-1

[6]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[7]
[Automatic Segmentation of Digital Pathology Slides Based on Unsupervised Learning].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2021-9

[8]
Deep Learning in Microscopy Image Analysis: A Survey.

IEEE Trans Neural Netw Learn Syst. 2017-11-22

[9]
Equipping computational pathology systems with artifact processing pipelines: a showcase for computation and performance trade-offs.

BMC Med Inform Decis Mak. 2024-10-7

[10]
Medical Image Analysis using Convolutional Neural Networks: A Review.

J Med Syst. 2018-10-8

引用本文的文献

[1]
Artificial Intelligence in Nephrology: Pioneering Precision with Multimodal Intelligence.

Indian J Nephrol. 2025

[2]
Automatic segmentation of clear cell renal cell carcinoma based on deep learning and a preliminary exploration of the tumor microenvironment.

Transl Androl Urol. 2025-7-30

[3]
Glo-In-One-v2: holistic identification of glomerular cells, tissues, and lesions in human and mouse histopathology.

J Med Imaging (Bellingham). 2025-11

[4]
Automating liver biopsy segmentation with a robust, open-source tool for pathology research: the HOTSPoT model.

NPJ Digit Med. 2025-7-18

[5]
AFTG-Net: A Deep Attention-based Fusion Framework of Topological and Gradient Features for Pathological Image Analysis.

Res Sq. 2025-7-11

[6]
Transformer optimization with meta learning on pathology images for breast cancer lymph node micrometastasis.

NPJ Digit Med. 2025-7-9

[7]
Leveraging U-Net and ASPP for effective fault detection in photovoltaic modules.

Sci Rep. 2025-7-1

[8]
AI-augmented pathology: the experience of transfer learning and intra-domain data diversity in breast cancer metastasis detection.

Front Oncol. 2025-6-11

[9]
Artificial Intelligence-Driven Telehealth Framework for Detecting Nystagmus.

Cureus. 2025-5-13

[10]
Comparison of spatial prediction models from Machine Learning of cholangiocarcinoma incidence in Thailand.

BMC Public Health. 2025-6-7

本文引用的文献

[1]
Machine Learning Methods for Histopathological Image Analysis.

Comput Struct Biotechnol J. 2018-2-9

[2]
Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome.

Sci Rep. 2018-7-10

[3]
Improving Dermoscopic Image Segmentation with Enhanced Convolutional-Deconvolutional Networks.

IEEE J Biomed Health Inform. 2017-12-25

[4]
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images.

Cell Rep. 2018-4-3

[5]
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.

BMC Bioinformatics. 2018-2-27

[6]
Automatic labeling of molecular biomarkers of immunohistochemistry images using fully convolutional networks.

PLoS One. 2018-1-19

[7]
Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.

JAMA. 2017-12-12

[8]
Data integration from pathology slides for quantitative imaging of multiple cell types within the tumor immune cell infiltrate.

Diagn Pathol. 2017-9-18

[9]
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.

IEEE Trans Pattern Anal Mach Intell. 2017-4-27

[10]
A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images.

Neurocomputing (Amst). 2016-5-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索