Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
University of Chinese Academy of Sciences, Beijing, China.
J Virol. 2022 Jul 27;96(14):e0041822. doi: 10.1128/jvi.00418-22. Epub 2022 Jun 27.
The positive-sense flavivirus RNA genome bears a cap 1 structure essential for RNA stability and viral protein translation, and the formation of cap 1 requires the virally encoded nonstructural protein NS5 harboring guanylyltransferase (GTase), cap guanine N7 methyltransferase (N7 MTase), and 5'-nucleotide ribose 2'-O MTase activities in its single-domain MTase module. Despite numerous MTase-containing structures reported, the structural evidence for a critical GMP-enzyme intermediate formation and RNA repositioning when transitioning among different reactions is missing. Here, we report 10 high-resolution MTase crystal structures of Omsk hemorrhagic fever virus (OHFV), a representative high-consequence tick-borne flavivirus, capturing previously unidentified GMP-arginine adduct structures and a rarely observed capped RNA conformation. These structures help us thread capping events in the canonical model with a structure-based hypothesis involving the flipping of the 5' nucleotide, while the observation of an mGMP-arginine adduct is compatible with an alternate capping model that decouples the N7 and 2'-O methylation steps. The methyltransferase (MTase) domain of flavivirus NS5 is unique in harboring guanylyltransferase (GTase), N7 MTase, and 2'-O MTase activities, playing a central role in viral RNA capping. However, the detailed mechanisms of the multistep capping process remain elusive. Here, we report 10 crystal structures of a flavivirus MTase to help understand the guanylyl transfer from GTP to the GTase itself and the transition between guanylyl transfer and methylation steps. In particular, a previously unobserved GMP-arginine covalent intermediate was captured multiple times in MTase crystal soaking trials with GTP present in the soaking solution, supporting its role in bridging the guanylyl transfer from GTP to the GTase and subsequent transfer to the 5'-diphosphate RNA.
正链 flavivirus RNA 基因组带有一个帽结构 1,对于 RNA 的稳定性和病毒蛋白翻译至关重要,而帽结构 1 的形成需要病毒编码的非结构蛋白 NS5 具有鸟苷转移酶 (GTase)、帽鸟嘌呤 N7 甲基转移酶 (N7 MTase) 和 5'-核苷酸核糖 2'-O MTase 活性在其单一结构域 MTase 模块中。尽管已经报道了许多含有 MTase 的结构,但在不同反应之间过渡时,关于关键 GMP-酶中间产物形成和 RNA 重定位的结构证据仍然缺失。在这里,我们报告了 10 个高分辨率的 Omsk 出血热病毒 (OHFV) MTase 晶体结构,OHFV 是一种具有代表性的高后果蜱传 flavivirus,捕获了以前未识别的 GMP-精氨酸加合物结构和一种罕见观察到的加帽 RNA 构象。这些结构帮助我们将加帽事件纳入具有基于结构的假设的经典模型中,该假设涉及 5'核苷酸的翻转,而 mGMP-精氨酸加合物的观察结果与一种分离 N7 和 2'-O 甲基化步骤的替代加帽模型兼容。 flavivirus NS5 的甲基转移酶 (MTase) 结构域独特地包含鸟苷转移酶 (GTase)、N7 MTase 和 2'-O MTase 活性,在病毒 RNA 加帽中发挥核心作用。然而,多步加帽过程的详细机制仍然难以捉摸。在这里,我们报告了 10 个 flavivirus MTase 的晶体结构,以帮助理解从 GTP 到 GTase 本身的鸟苷转移以及鸟苷转移和甲基化步骤之间的转变。特别是,在存在于浸泡溶液中的 GTP 的 MTase 晶体浸泡试验中多次捕获了以前未观察到的 GMP-精氨酸共价中间产物,支持其在桥接 GTP 到 GTase 的鸟苷转移以及随后转移到 5'-二磷酸 RNA 中的作用。