Suppr超能文献

定义脓毒症表型-两种脓毒症的小鼠模型和机器学习。

Defining Sepsis Phenotypes-Two Murine Models of Sepsis and Machine Learning.

机构信息

Department of Surgery, Boston Medical Center, Boston University, Boston, Massachusetts.

Department of Pathology & Laboratory Medicine, Boston Medical Center, Boston University, Boston, Massachusetts.

出版信息

Shock. 2022 Jun 1;57(6):268-273. doi: 10.1097/SHK.0000000000001935.

Abstract

INTRODUCTION

The immunobiology defining the clinically apparent differences in response to sepsis remains unclear. We hypothesize that in murine models of sepsis we can identify phenotypes of sepsis using non-invasive physiologic parameters (NIPP) early after infection to distinguish between different inflammatory states.

METHODS

Two murine models of sepsis were used: gram-negative pneumonia (PNA) and cecal ligation and puncture (CLP). All mice were treated with broad spectrum antibiotics and fluid resuscitation. High-risk sepsis responders (pDie) were defined as those predicted to die within 72 h following infection. Low-risk responders (pLive) were expected to survive the initial 72 h of sepsis. Statistical modeling in R was used for statistical analysis and machine learning.

RESULTS

NIPP obtained at 6 and 24 h after infection of 291 mice (85 PNA and 206 CLP) were used to define the sepsis phenotypes. Lasso regression for variable selection with 10-fold cross-validation was used to define the optimal shrinkage parameters. The variables selected to discriminate between phenotypes included 6-h temperature and 24-h pulse distention, heart rate (HR), and temperature. Applying the model to fit test data (n = 55), area under the curve (AUC) for the receiver operating characteristics (ROC) curve was 0.93. Subgroup analysis of 120 CLP mice revealed a HR of <620 bpm at 24 h as a univariate predictor of pDie. (AUC of ROC curve = 0.90). Subgroup analysis of PNA exposed mice (n = 121) did not reveal a single predictive variable highlighting the complex physiological alterations in response to sepsis.

CONCLUSION

In murine models with various etiologies of sepsis, non-invasive vitals assessed just 6 and 24 h after infection can identify different sepsis phenotypes. Stratification by sepsis phenotypes can transform future studies investigating novel therapies for sepsis.

摘要

简介

导致脓毒症临床表现差异的免疫生物学机制仍不清楚。我们假设,在脓毒症的小鼠模型中,我们可以通过感染后早期的非侵入性生理参数(NIPP)来识别脓毒症的表型,以区分不同的炎症状态。

方法

使用了两种脓毒症的小鼠模型:革兰氏阴性肺炎(PNA)和盲肠结扎穿孔(CLP)。所有小鼠均接受广谱抗生素和液体复苏治疗。高风险脓毒症反应者(pDie)定义为预计在感染后 72 小时内死亡的患者。低风险反应者(pLive)预计能在最初的 72 小时脓毒症中存活。使用 R 中的统计建模进行统计分析和机器学习。

结果

在 291 只小鼠(85 只 PNA 和 206 只 CLP)感染后 6 小时和 24 小时获得的 NIPP 用于定义脓毒症表型。使用 10 倍交叉验证的套索回归进行变量选择,以定义最佳收缩参数。用于区分表型的变量包括 6 小时体温和 24 小时脉搏扩张、心率(HR)和体温。将该模型应用于拟合测试数据(n=55),接受者操作特征(ROC)曲线下的面积(AUC)为 0.93。对 120 只 CLP 小鼠的亚组分析显示,24 小时时 HR<620 bpm 是 pDie 的一个单变量预测因子。(ROC 曲线的 AUC 值=0.90)。对暴露于 PNA 的小鼠(n=121)的亚组分析没有发现单一的预测变量,这突出了对脓毒症反应的复杂生理变化。

结论

在具有不同病因的脓毒症的小鼠模型中,感染后仅 6 小时和 24 小时评估的非侵入性生命体征可以识别不同的脓毒症表型。根据脓毒症表型进行分层可以改变未来研究新型脓毒症治疗方法的方式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验