The National Research Centre, Egypt.
Yas Clinic, Abu Dhabi, UAE.
Shock. 2024 Jan 1;61(1):4-18. doi: 10.1097/SHK.0000000000002227. Epub 2023 Sep 22.
Sepsis remains a major challenge that necessitates improved approaches to enhance patient outcomes. This study explored the potential of machine learning (ML) techniques to bridge the gap between clinical data and gene expression information to better predict and understand sepsis. We discuss the application of ML algorithms, including neural networks, deep learning, and ensemble methods, to address key evidence gaps and overcome the challenges in sepsis research. The lack of a clear definition of sepsis is highlighted as a major hurdle, but ML models offer a workaround by focusing on endpoint prediction. We emphasize the significance of gene transcript information and its use in ML models to provide insights into sepsis pathophysiology and biomarker identification. Temporal analysis and integration of gene expression data further enhance the accuracy and predictive capabilities of ML models for sepsis. Although challenges such as interpretability and bias exist, ML research offers exciting prospects for addressing critical clinical problems, improving sepsis management, and advancing precision medicine approaches. Collaborative efforts between clinicians and data scientists are essential for the successful implementation and translation of ML models into clinical practice. Machine learning has the potential to revolutionize our understanding of sepsis and significantly improve patient outcomes. Further research and collaboration between clinicians and data scientists are needed to fully understand the potential of ML in sepsis management.
脓毒症仍然是一个重大挑战,需要改进方法来提高患者的治疗效果。本研究探讨了机器学习 (ML) 技术的潜力,以弥合临床数据和基因表达信息之间的差距,从而更好地预测和理解脓毒症。我们讨论了 ML 算法的应用,包括神经网络、深度学习和集成方法,以解决脓毒症研究中的关键证据差距和挑战。脓毒症缺乏明确的定义是一个主要障碍,但 ML 模型通过专注于终点预测提供了一种解决方法。我们强调了基因转录信息及其在 ML 模型中的应用的重要性,这可以为脓毒症病理生理学和生物标志物识别提供深入的见解。时间分析和基因表达数据的整合进一步提高了 ML 模型对脓毒症的准确性和预测能力。尽管存在可解释性和偏差等挑战,但 ML 研究为解决关键临床问题、改善脓毒症管理和推进精准医学方法提供了令人兴奋的前景。临床医生和数据科学家之间的合作对于成功实施和将 ML 模型转化为临床实践至关重要。机器学习有可能彻底改变我们对脓毒症的理解,并显著改善患者的治疗效果。需要临床医生和数据科学家之间进一步的研究和合作,以充分了解 ML 在脓毒症管理中的潜力。