Suppr超能文献

酶动力学和探测器灵敏度决定了无扩增 CRISPR-Cas12 和 CRISPR-Cas13 诊断检测限。

Enzyme Kinetics and Detector Sensitivity Determine Limits of Detection of Amplification-Free CRISPR-Cas12 and CRISPR-Cas13 Diagnostics.

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.

Department of Aeronautics & Astronautics, Stanford University, Stanford, California 94305, United States.

出版信息

Anal Chem. 2022 Jul 12;94(27):9826-9834. doi: 10.1021/acs.analchem.2c01670. Epub 2022 Jun 27.

Abstract

Interest in CRISPR-Cas12 and CRISPR-Cas13 detection continues to increase as these detection schemes enable the specific recognition of nucleic acids. The fundamental sensitivity limits of these schemes (and their applicability in amplification-free assays) are governed by kinetic rates. However, these kinetic rates remain poorly understood, and their reporting has been inconsistent. We quantify kinetic parameters for several enzymes (LbCas12a, AsCas12a, AapCas12b, LwaCas13a, and LbuCas13a) and their corresponding limits of detection (LoD). Collectively, we present quantification of enzyme kinetics for 14 guide RNAs (gRNAs) and nucleic acid targets for a total of 50 sets of kinetic rate parameters and 25 LoDs. We validate the self-consistency of our measurements by comparing trends and limiting behaviors with a Michaelis-Menten -cleavage reaction kinetics model. For our assay conditions, activated Cas12 and Cas13 enzymes exhibit -cleavage catalytic efficiencies between order 10 and 10 M s. For assays that use fluorescent reporter molecules (ssDNA and ssRNA) for target detection, the kinetic rates at the current assay conditions result in an amplification-free LoD in the picomolar range. The results suggest that successful detection of target requires cleavage (by an activated CRISPR enzyme) of the order of at least 0.1% of the fluorescent reporter molecules. This fraction of reporters cleaved is required to differentiate the signal from the background, and we hypothesize that this required fraction is largely independent of the detection method (e.g., endpoint vs reaction velocity) and detector sensitivity. Our results demonstrate the fundamental nature by which kinetic rates and background signal limit LoDs and thus highlight areas of improvement for the emerging field of CRISPR diagnostics.

摘要

人们对 CRISPR-Cas12 和 CRISPR-Cas13 检测的兴趣持续增加,因为这些检测方案能够实现对核酸的特异性识别。这些检测方案的基本灵敏度限制(以及它们在无扩增检测中的适用性)受动力学速率控制。然而,这些动力学速率仍未得到很好的理解,其报告也不一致。我们量化了几种酶(LbCas12a、AsCas12a、AapCas12b、LwaCas13a 和 LbuCas13a)及其相应检测限(LoD)的动力学参数。我们总共展示了 14 种向导 RNA(gRNA)和核酸靶标对 50 组动力学速率参数和 25 个 LoD 的酶动力学定量。通过将趋势和限制行为与米氏-门捷列夫 - 切割反应动力学模型进行比较,我们验证了测量的自洽性。对于我们的测定条件,激活的 Cas12 和 Cas13 酶表现出 10 到 10 M s 之间的切割催化效率。对于使用荧光报告分子(ssDNA 和 ssRNA)进行靶标检测的测定,当前测定条件下的动力学速率导致无扩增 LoD 在皮摩尔范围内。结果表明,成功检测靶标需要(通过激活的 CRISPR 酶)切割荧光报告分子的数量达到至少 0.1%。需要切割的报告分子分数用于区分信号与背景,我们假设这个所需分数在很大程度上独立于检测方法(例如,终点与反应速度)和检测器灵敏度。我们的结果展示了动力学速率和背景信号限制 LoD 的基本性质,从而突出了 CRISPR 诊断这一新兴领域的改进领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验