Ramachandran Ashwin, Santiago Juan G
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
Anal Chem. 2021 May 25;93(20):7456-7464. doi: 10.1021/acs.analchem.1c00525. Epub 2021 May 12.
CRISPR-diagnostic assays have gained significant interest in the last few years. This interest has grown rapidly during the current COVID-19 pandemic, where CRISPR-diagnostics have been frontline contenders for rapid testing solutions. This surge in CRISPR-diagnostic research prompts the following question: what exactly are the achievable limits of detection and associated assay times enabled by the kinetics of enzymes such as Cas12 and Cas13? To explore this question, we here present a model based on Michaelis-Menten enzyme kinetics theory applied to CRISPR enzymes. We use the model to develop analytical solutions for reaction kinetics and develop back-of-the-envelope criteria to validate and check for consistency in reported enzyme kinetic parameters. We applied our analyses to all studies known to us, which report Michaelis-Menten-type kinetic data for CRISPR-associated enzymes. These studies include all subtypes of Cas12 and Cas13 and orthologs. We found all but one study clearly violate at least two of our three rules and therefore present data that violate basic physical limits. We performed an experimental study of reaction kinetics of LbCas12a with both ssDNA and dsDNA activators and use these data to validate our model and its predicted scaling. The validated model is used to explore CRISPR reaction time scales and the degree of reaction completion for practically relevant target concentrations applicable to CRISPR-diagnostic assays. The results have broad implications for achievable limits of detection and assay times of emerging, amplification-free CRISPR-detection methods.
CRISPR诊断检测在过去几年中引起了广泛关注。在当前的COVID-19大流行期间,这种关注迅速增长,CRISPR诊断检测一直是快速检测解决方案的一线竞争者。CRISPR诊断研究的激增引发了以下问题:由Cas12和Cas13等酶的动力学所实现的检测极限和相关检测时间究竟是多少?为了探讨这个问题,我们在此提出一个基于米氏酶动力学理论并应用于CRISPR酶的模型。我们使用该模型来开发反应动力学的解析解,并制定粗略的标准以验证和检查所报道的酶动力学参数的一致性。我们将分析应用于我们所知的所有研究,这些研究报告了CRISPR相关酶的米氏型动力学数据。这些研究包括Cas12和Cas13的所有亚型以及直系同源物。我们发现除一项研究外,所有其他研究都明显违反了我们三条规则中的至少两条,因此所呈现的数据违反了基本物理极限。我们对LbCas12a与单链DNA和双链DNA激活剂的反应动力学进行了实验研究,并使用这些数据来验证我们的模型及其预测的标度。经过验证的模型用于探索CRISPR反应时间尺度以及适用于CRISPR诊断检测的实际相关靶标浓度下的反应完成程度。这些结果对新兴的、无需扩增的CRISPR检测方法的可实现检测极限和检测时间具有广泛影响。