Tan Siew Ting Melissa, Giovannitti Alexander, Marks Adam, Moser Maximilian, Quill Tyler J, McCulloch Iain, Salleo Alberto, Bonacchini Giorgio E
Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
Adv Mater. 2022 Aug;34(33):e2202994. doi: 10.1002/adma.202202994. Epub 2022 Jul 15.
In the past two decades, organic electronic materials have enabled and accelerated a large and diverse set of technologies, from energy-harvesting devices and electromechanical actuators, to flexible and printed (opto)electronic circuitry. Among organic (semi)conductors, organic mixed ion-electronic conductors (OMIECs) are now at the center of renewed interest in organic electronics, as they are key drivers of recent developments in the fields of bioelectronics, energy storage, and neuromorphic computing. However, due to the relatively slow switching dynamics of organic electronics, their application in microwave technology, until recently, has been overlooked. Nonetheless, other unique properties of OMIECs, such as their substantial electrochemical tunability, charge-modulation range, and processability, make this field of use ripe with opportunities. In this work, the use of a series of solution-processed intrinsic OMIECs is demonstrated to actively tune the properties of metamaterial-inspired microwave devices, including an untethered bioelectrochemical sensing platform that requires no external power, and a tunable resonating structure with independent amplitude- and frequency-modulation. These devices showcase the considerable potential of OMIEC-based metadevices in autonomous bioelectronics and reconfigurable microwave optics.
在过去二十年中,有机电子材料推动并加速了大量多样的技术发展,从能量收集装置和机电致动器到柔性及印刷(光)电子电路。在有机(半)导体中,有机混合离子 - 电子导体(OMIECs)如今处于有机电子学新的研究热点中心,因为它们是生物电子学、能量存储和神经形态计算领域近期发展的关键驱动力。然而,由于有机电子学相对较慢的开关动力学,其在微波技术中的应用直到最近一直被忽视。尽管如此,OMIECs的其他独特性质,如它们显著的电化学可调性、电荷调制范围和可加工性,使得该应用领域充满机遇。在这项工作中,展示了一系列溶液处理的本征OMIECs用于主动调节超材料启发的微波器件的特性,包括一个无需外部电源的无束缚生物电化学传感平台,以及一个具有独立幅度和频率调制的可调谐谐振结构。这些器件展示了基于OMIEC的超材料器件在自主生物电子学和可重构微波光学中的巨大潜力。