Suppr超能文献

基于双极有机混合离子-电子导体的自适应生物传感和神经形态分类。

Adaptive Biosensing and Neuromorphic Classification Based on an Ambipolar Organic Mixed Ionic-Electronic Conductor.

机构信息

Microsystems, Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands.

Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China.

出版信息

Adv Mater. 2022 May;34(20):e2200393. doi: 10.1002/adma.202200393. Epub 2022 Apr 17.

Abstract

Organic mixed ionic-electronic conductors (OMIECs) are central to bioelectronic applications such as biosensors, health-monitoring devices, and neural interfaces, and have facilitated efficient next-generation brain-inspired computing and biohybrid systems. Despite these examples, smart and adaptive circuits that can locally process and optimize biosignals have not yet been realized. Here, a tunable sensing circuit is shown that can locally modulate biologically relevant signals like electromyograms (EMGs) and electrocardiograms (ECGs), that is based on a complementary logic inverter combined with a neuromorphic memory element, and that is constructed from a single polymer mixed conductor. It is demonstrated that a small neuromorphic array based on this material effects high classification accuracy in heartbeat anomaly detection. This high-performance material allows for straightforward monolithic integration, which reduces fabrication complexity while also achieving high on/off ratios with excellent ambient p- and n-type stability in transistor performance. This material opens a route toward simple and straightforward fabrication and integration of more sophisticated adaptive circuits for future smart bioelectronics.

摘要

有机混合离子-电子导体(OMIECs)是生物电子应用的核心,如生物传感器、健康监测设备和神经接口,并促进了高效的下一代基于大脑的计算和生物混合系统。尽管有这些例子,但能够局部处理和优化生物信号的智能和自适应电路尚未实现。在这里,展示了一种可调谐传感电路,该电路可以局部调制与肌电图(EMG)和心电图(ECG)等生物相关的信号,该电路基于互补逻辑反相器与神经形态存储元件相结合,并由单个聚合物混合导体构建。结果表明,基于这种材料的小型神经形态阵列在心跳异常检测中具有很高的分类精度。这种高性能材料允许进行简单的单片集成,从而降低了制造复杂性,同时在晶体管性能方面实现了优异的环境 p 型和 n 型稳定性以及高的导通/截止比。这种材料为未来的智能生物电子学开辟了一条简单直接的制造和集成更复杂自适应电路的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验