Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China.
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2201275119. doi: 10.1073/pnas.2201275119. Epub 2022 Jun 27.
Fine audiovocal control is a hallmark of human speech production and depends on precisely coordinated muscle activity guided by sensory feedback. Little is known about shared audiovocal mechanisms between humans and other mammals. We hypothesized that real-time audiovocal control in bat echolocation uses the same computational principles as human speech. To test the prediction of this hypothesis, we applied state feedback control (SFC) theory to the analysis of call frequency adjustments in the echolocating bat, . This model organism exhibits well-developed audiovocal control to sense its surroundings via echolocation. Our experimental paradigm was analogous to one implemented in human subjects. We measured the bats' vocal responses to spectrally altered echolocation calls. Individual bats exhibited highly distinct patterns of vocal compensation to these altered calls. Our findings mirror typical observations of speech control in humans listening to spectrally altered speech. Using mathematical modeling, we determined that the same computational principles of SFC apply to bat echolocation and human speech, confirming the prediction of our hypothesis.
精细的视听控制是人类言语产生的标志,依赖于精确协调的肌肉活动,受感觉反馈的指导。人类和其他哺乳动物之间共享的视听机制知之甚少。我们假设,蝙蝠回声定位中的实时视听控制使用与人类言语相同的计算原理。为了验证这一假设的预测,我们将状态反馈控制(SFC)理论应用于对回声定位蝙蝠的叫声频率调整的分析。这个模式生物表现出高度发达的视听控制能力,通过回声定位来感知周围环境。我们的实验范式类似于在人类受试者中实施的实验。我们测量了蝙蝠对频谱改变的回声定位叫声的发声反应。个体蝙蝠对这些改变的叫声表现出高度独特的发声补偿模式。我们的发现反映了人类在听频谱改变的言语时对言语控制的典型观察。通过数学建模,我们确定 SFC 的相同计算原理适用于蝙蝠回声定位和人类言语,证实了我们假设的预测。