Suppr超能文献

利用机器学习检查寻求治疗酒精使用障碍的个体治疗目标变化的预测因素。

Using machine learning to examine predictors of treatment goal change among individuals seeking treatment for alcohol use disorder.

机构信息

Center on Alcohol, Substance Use, and Addictions, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.

Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA.

出版信息

J Subst Abuse Treat. 2022 Sep;140:108825. doi: 10.1016/j.jsat.2022.108825. Epub 2022 Jun 16.

Abstract

INTRODUCTION

The goals of individuals seeking treatment for alcohol use disorder (AUD) are typically quantified as abstinent or nonabstinent (e.g., moderate drinking) goals. However, treatment goals can vary over time and be influenced by life circumstances. This study aims to identify predictors of treatment goal change and direction of change from baseline to six-month follow-up among individuals seeking treatment for AUD.

METHODS

This study is a secondary analysis of data from the Relapse Replication and Extension Project. The study included participants who completed assessments at baseline and six-month follow-up in the analysis (n = 441). We used decision trees to examine 111 potential predictors of treatment goal change. The study cross-validated results using random forests. The team examined changes in goal between baseline and follow-up (Decision Tree 1) and quantified them as being toward or away from a complete abstinence goal (Decision Tree 2).

RESULTS

Nearly 50 % of the sample changed their treatment goal from baseline to 6 months, and 68.7 % changed from a nonabstinence goal toward a complete abstinence goal. The study identified seven unique predictors of goal change. The most common predictors of changing a treatment goal were number of recent treatment sessions prior to enrolling in the study, other substance use, negative affect, anxiety, social support, and baseline drinks per drinking day. Participants with a greater number of recent treatment sessions and who sought social support were most likely to change their goal. Additionally, individuals with more substance use tended to change away from complete abstinence goals. Cross-validation supported baseline drinks per drinking day, social support, baseline maximum blood alcohol concentration (BAC), lifetime tobacco use, baseline average BAC, lifetime cocaine use, Inventory of Drinking Situations total score, and Situational Confidence Questionnaire average score as important predictors.

CONCLUSIONS

This study identified seven unique predictors of treatment goal change while in AUD treatment. Prior treatment, drinking to cope, and social support were most associated with goal changes. This information can inform providers who seek to understand factors associated with treatment goal selection and changes in goals during treatment.

摘要

简介

寻求治疗酒精使用障碍 (AUD) 的个体的治疗目标通常被量化为戒断或非戒断(例如,适度饮酒)目标。然而,治疗目标可能会随时间而变化,并受到生活环境的影响。本研究旨在确定寻求 AUD 治疗的个体在基线至 6 个月随访期间治疗目标变化的预测因素以及变化的方向。

方法

本研究是对复发复制和扩展项目数据的二次分析。该研究包括在分析中完成基线和 6 个月随访评估的参与者(n=441)。我们使用决策树来检查 111 个潜在的治疗目标变化预测因素。该研究使用随机森林交叉验证结果。该团队检查了基线和随访之间目标的变化(决策树 1),并将其量化为朝向或远离完全戒断目标(决策树 2)。

结果

样本中近 50%的人在基线至 6 个月期间改变了治疗目标,68.7%的人从非戒断目标转变为完全戒断目标。该研究确定了七个独特的目标变化预测因素。目标变化最常见的预测因素是研究前最近的治疗次数、其他物质使用、负面情绪、焦虑、社会支持以及基线每天饮酒量。接受更多最近治疗次数和寻求社会支持的参与者最有可能改变他们的目标。此外,物质使用量较大的个体更倾向于改变完全戒断目标。交叉验证支持基线每天饮酒量、社会支持、基线最大血液酒精浓度 (BAC)、终生吸烟、基线平均 BAC、终生可卡因使用、饮酒情境量表总得分和情境自信问卷平均得分作为重要预测因素。

结论

本研究确定了 AUD 治疗期间治疗目标变化的七个独特预测因素。先前的治疗、饮酒应对和社会支持与目标变化最相关。这些信息可以为寻求了解与治疗目标选择相关的因素以及治疗期间目标变化的提供者提供信息。

相似文献

2
Pretreatment alcohol drinking goals are associated with treatment outcomes.治疗前饮酒目标与治疗结果相关。
Alcohol Clin Exp Res. 2013 Oct;37(10):1745-52. doi: 10.1111/acer.12137. Epub 2013 Jun 25.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验