Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo JAPAN.
Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori Nishi, Otaku, Tokyo, Japan.
Spine J. 2022 Nov;22(11):1768-1777. doi: 10.1016/j.spinee.2022.06.008. Epub 2022 Jun 24.
Although the results of decompression surgery for lumbar spinal canal stenosis (LSS) are favorable, it is still difficult to predict the postoperative health-related quality of life of patients before surgery.
The purpose of this study was to develop and validate a machine learning model to predict the postoperative outcome of decompression surgery for patients with LSS.
STUDY DESIGN/SETTING: A multicentered retrospective study.
A total of 848 patients who underwent decompression surgery for LSS at an academic hospital, tertiary center, and private hospital were included (age 71±9 years, 68% male, 91% LSS, level treated 1.8±0.8, operation time 69±37 minutes, blood loss 48±113 mL, and length of hospital stay 12±5 days).
Baseline and 2 years postoperative health-related quality of life.
The subjects were randomly assigned in a 7:3 ratio to a model building cohort and a testing cohort to test the models' accuracy. Twelve predictive algorithms using 68 preoperative factors were used to predict each domain of the Japanese Orthopedic Association Back Pain Evaluation Questionnaire and visual analog scale scores at 2 years postoperatively. The final predictive values were generated using an ensemble of the top five algorithms in prediction accuracy.
The correlation coefficients of the top algorithms for each domain established using the preoperative factors were excellent (correlation coefficient: 0.95-0.97 [relative error: 0.06-0.14]). The performance evaluation of each Japanese Orthopedic Association Back Pain Evaluation Questionnaire domain and visual analog scale score by the ensemble of the top five algorithms in the testing cohort was favorable (mean absolute error [MAE] 8.9-17.4, median difference [MD] 8.1-15.6/100 points), with the highest accuracy for mental status (MAE 8.9, MD 8.1) and the lowest for buttock and leg numbness (MAE 1.7, MD 1.6/10 points). A strong linear correlation was observed between the predicted and measured values (linear correlation 0.82-0.89), while 4% to 6% of the subjects had predicted values of greater than±3 standard deviations of the MAE.
We successfully developed a machine learning model to predict the postoperative outcomes of decompression surgery for patients with LSS using patient data from three different institutions in three different settings. Thorough analyses for the subjects with deviations from the actual measured values may further improve the predictive probability of this model.
尽管腰椎管狭窄症(LSS)减压手术的结果是有利的,但在手术前仍然很难预测患者术后的健康相关生活质量。
本研究的目的是开发和验证一种机器学习模型,以预测 LSS 患者减压手术后的结果。
研究设计/设置:一项多中心回顾性研究。
共纳入 848 例在学术医院、三级中心和私立医院接受 LSS 减压手术的患者(年龄 71±9 岁,68%为男性,91%为 LSS,治疗水平 1.8±0.8,手术时间 69±37 分钟,出血量 48±113 mL,住院时间 12±5 天)。
基线和 2 年术后健康相关生活质量。
将患者随机分为 7:3 的比例分配到模型构建队列和测试队列中,以测试模型的准确性。使用 68 个术前因素的 12 种预测算法来预测术后 2 年日本骨科协会腰痛评估问卷和视觉模拟评分的每个领域。使用预测准确性最高的前 5 种算法的集合生成最终预测值。
使用术前因素建立的每个领域的顶级算法的相关系数非常好(相关系数:0.95-0.97[相对误差:0.06-0.14])。在测试队列中,使用前 5 种算法的集合对每个日本骨科协会腰痛评估问卷领域和视觉模拟评分的性能评估是有利的(平均绝对误差[MAE]8.9-17.4,中位数差值[MD]8.1-15.6/100 分),精神状态的准确性最高(MAE 8.9,MD 8.1),臀部和腿部麻木的准确性最低(MAE 1.7,MD 1.6/10 分)。预测值与实测值之间存在很强的线性相关性(线性相关性 0.82-0.89),而 4%至 6%的患者的预测值大于±3 个 MAE 的标准差。
我们成功地使用来自三个不同机构和三个不同环境的患者数据开发了一种机器学习模型,以预测 LSS 患者减压手术后的结果。对与实际测量值有偏差的受试者进行深入分析可能会进一步提高该模型的预测概率。