Thomas Luke, Chung Jun Ho, Lu Sarah, Essilfie Anthony
School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
California University of Science and Medicine, Colton, CA, 92324, USA.
J Orthop. 2024 Jun 10;57:55-59. doi: 10.1016/j.jor.2024.06.006. eCollection 2024 Nov.
The purpose of this study is to determine if machine learning is an effective method to identify features of patients who may need a longer postoperative stay following a patellar tendon repair.
The American College of Surgeons National Quality Improvement Program (ACS-NSQIP) was used to collect 1173 patients who underwent patellar tendon repair. Machine learning (ML) was then applied to determine features of importance in this patient population. Several algorithms were used: Random Forest, Artificial Neural Network, Gradient Boosting, and Support Vector Machine. These were then compared to the American Society of Anesthesiologists (ASA) classification system based logistic regression as a control.
Random Forest (RF) was determined to be the best performing algorithm, with an AUC of 0.72, accuracy of 77.66 %, and precision of 0.79, and recall of 0.96. All other algorithms performed similarly to the control. RF gave the highest permutation feature importance to age (PFI 0.25), BMI (PFI 0.19), ASA classification (PFI 0.14), hematocrit (PFI 0.12), and height (PFI 0.11).
This study shows that machine learning can be used as a tool to identify features of importance for length of postoperative stay in patients undergoing patellar tendon repair. RF was found to be a better performing model than logistic regression at determining patients predisposed to longer length of stay as determined by AUC. This supported the study's hypothesis that ML can provide an effective method for identifying features of importance in patients requiring a longer postoperative stay after patellar tendon repair.
本研究的目的是确定机器学习是否是一种有效的方法,用于识别在髌腱修复术后可能需要更长住院时间的患者特征。
利用美国外科医师学会国家质量改进计划(ACS-NSQIP)收集1173例行髌腱修复术的患者。然后应用机器学习(ML)来确定该患者群体中重要的特征。使用了几种算法:随机森林、人工神经网络、梯度提升和支持向量机。然后将这些算法与基于美国麻醉医师协会(ASA)分类系统的逻辑回归作为对照进行比较。
随机森林(RF)被确定为表现最佳的算法,曲线下面积(AUC)为0.72,准确率为77.66%,精确率为0.79,召回率为0.96。所有其他算法的表现与对照组相似。RF对年龄(排列特征重要性[PFI]为0.25)、体重指数(PFI为0.19)、ASA分类(PFI为0.14)、血细胞比容(PFI为0.12)和身高(PFI为0.11)的排列特征重要性最高。
本研究表明,机器学习可作为一种工具,用于识别髌腱修复术后患者住院时间长短的重要特征。在通过AUC确定易发生较长住院时间的患者方面,发现RF是比逻辑回归表现更好的模型。这支持了本研究的假设,即ML可为识别髌腱修复术后需要更长住院时间的患者的重要特征提供一种有效方法。