Suppr超能文献

基于分割传播的颞骨统计形状模型。

Statistical Shape Model of the Temporal Bone Using Segmentation Propagation.

机构信息

Department of Computer Science, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.

Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.

出版信息

Otol Neurotol. 2022 Jul 1;43(6):e679-e687. doi: 10.1097/MAO.0000000000003554.

Abstract

HYPOTHESIS

Automated image registration techniques can successfully determine anatomical variation in human temporal bones with statistical shape modeling.

BACKGROUND

There is a lack of knowledge about inter-patient anatomical variation in the temporal bone. Statistical shape models (SSMs) provide a powerful method for quantifying variation of anatomical structures in medical images but are time-intensive to manually develop. This study presents SSMs of temporal bone anatomy using automated image-registration techniques.

METHODS

Fifty-three cone-beam temporal bone CTs were included for SSM generation. The malleus, incus, stapes, bony labyrinth, and facial nerve were automatically segmented using 3D Slicer and a template-based segmentation propagation technique. Segmentations were then used to construct SSMs using MATLAB. The first three principal components of each SSM were analyzed to describe shape variation.

RESULTS

Principal component analysis of middle and inner ear structures revealed novel modes of anatomical variation. The first three principal components for the malleus represented variability in manubrium length (mean: 4.47 mm; ±2-SDs: 4.03-5.03 mm) and rotation about its long axis (±2-SDs: -1.6° to 1.8° posteriorly). The facial nerve exhibits variability in first and second genu angles. The bony labyrinth varies in the angle between the posterior and superior canals (mean: 88.9°; ±2-SDs: 83.7°-95.7°) and cochlear orientation (±2-SDs: -4.0° to 3.0° anterolaterally).

CONCLUSIONS

SSMs of temporal bone anatomy can inform surgeons on clinically relevant inter-patient variability. Anatomical variation elucidated by these models can provide novel insight into function and pathophysiology. These models also allow further investigation of anatomical variation based on age, BMI, sex, and geographical location.

摘要

假设

自动化图像配准技术可以通过统计形状建模成功确定人类颞骨的解剖变异。

背景

关于颞骨的患者间解剖变异知之甚少。统计形状模型(SSM)为量化医学图像中解剖结构的变异提供了一种强大的方法,但手动开发非常耗时。本研究使用自动化图像配准技术展示了颞骨解剖的 SSM。

方法

纳入 53 例锥形束颞骨 CT 用于 SSM 生成。使用 3D Slicer 和基于模板的分割传播技术自动分割锤骨、砧骨、镫骨、骨迷路和面神经。然后使用 MATLAB 构建 SSM。分析每个 SSM 的前三个主成分来描述形状变化。

结果

中耳和内耳结构的主成分分析揭示了新的解剖变异模式。锤骨的前三个主成分代表了柄长的变异性(平均值:4.47 毫米;±2-SD:4.03-5.03 毫米)和围绕其长轴的旋转(±2-SD:-1.6°至 1.8°向后)。面神经的第一和第二膝部角度存在变异性。骨迷路在后上管之间的角度(平均值:88.9°;±2-SD:83.7°-95.7°)和耳蜗方向(±2-SD:-4.0°至 3.0°前外侧)上存在变异性。

结论

颞骨解剖的 SSM 可以为外科医生提供有关临床相关患者间变异的信息。这些模型阐明的解剖变异可以为功能和病理生理学提供新的见解。这些模型还允许进一步研究基于年龄、BMI、性别和地理位置的解剖变异。

相似文献

2
Automated Extraction of Anatomical Measurements From Temporal Bone CT Imaging.从颞骨 CT 成像中自动提取解剖测量值。
Otolaryngol Head Neck Surg. 2022 Oct;167(4):731-738. doi: 10.1177/01945998221076801. Epub 2022 Feb 8.
7
Three-dimensional anatomy of the temporal bone in normal mice.正常小鼠颞骨的三维解剖结构。
Anat Histol Embryol. 2009 Aug;38(4):311-5. doi: 10.1111/j.1439-0264.2009.00946.x. Epub 2009 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验