文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CAMSAP2 通过相分离组织一个γ-微管蛋白独立的微管核中心。

CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation.

机构信息

Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.

JST, PRESTO, Saitama, Japan.

出版信息

Elife. 2022 Jun 28;11:e77365. doi: 10.7554/eLife.77365.


DOI:10.7554/eLife.77365
PMID:35762204
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9239687/
Abstract

Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules.

摘要

微管是由αβ-微管蛋白异二聚体组成的动态聚合物。最初的聚合过程,称为微管成核,通过αβ-微管蛋白自发发生。由于大的能量障碍阻止了细胞中的微管成核,因此 γ-微管蛋白环复合物被招募到中心体以克服成核障碍。然而,在各种细胞类型中,相当数量的微管可以独立于中心体聚合。在这里,我们提供的证据表明,负端结合钙调蛋白调节的血影蛋白相关蛋白 2(CAMSAP2)通过显著降低成核势垒,作为微管形成的强成核剂。CAMSAP2 通过相分离过程与αβ-微管共凝聚,产生大量成核中间产物。然后微管从共凝聚物中辐射出来,形成星状结构。CAMSAP2 在共凝聚物中定位,并在一定程度上装饰辐射状的微管晶格。总之,这些体外发现表明,CAMSAP2 通过组织成核中心以及稳定微管中间产物和生长微管来支持微管的成核和生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/c38c1c7991a8/elife-77365-sa2-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/372794229b86/elife-77365-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/8020b860db90/elife-77365-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/1852a9ea4b37/elife-77365-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/21427cbba1ca/elife-77365-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/3b6515259133/elife-77365-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/2d6d018e72fc/elife-77365-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/9c403d37613c/elife-77365-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/ec8ef4149a82/elife-77365-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/83f79faef325/elife-77365-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/21ff5c29328a/elife-77365-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/cbba468644a5/elife-77365-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/2443f5d547f3/elife-77365-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/d46484d6bb97/elife-77365-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/467bbe9275ab/elife-77365-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/3f56097f68ba/elife-77365-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/1e3506a6e7d0/elife-77365-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/a8c133f6209f/elife-77365-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/6d372ce27df9/elife-77365-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/0a3e5297bcf4/elife-77365-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/ad4766a432d5/elife-77365-fig8-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/b1d4f1efe3fe/elife-77365-fig8-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/6b5e1ab35e6b/elife-77365-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/b39e32f7ef4e/elife-77365-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/c38c1c7991a8/elife-77365-sa2-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/372794229b86/elife-77365-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/8020b860db90/elife-77365-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/1852a9ea4b37/elife-77365-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/21427cbba1ca/elife-77365-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/3b6515259133/elife-77365-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/2d6d018e72fc/elife-77365-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/9c403d37613c/elife-77365-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/ec8ef4149a82/elife-77365-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/83f79faef325/elife-77365-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/21ff5c29328a/elife-77365-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/cbba468644a5/elife-77365-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/2443f5d547f3/elife-77365-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/d46484d6bb97/elife-77365-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/467bbe9275ab/elife-77365-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/3f56097f68ba/elife-77365-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/1e3506a6e7d0/elife-77365-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/a8c133f6209f/elife-77365-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/6d372ce27df9/elife-77365-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/0a3e5297bcf4/elife-77365-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/ad4766a432d5/elife-77365-fig8-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/b1d4f1efe3fe/elife-77365-fig8-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/6b5e1ab35e6b/elife-77365-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/b39e32f7ef4e/elife-77365-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/9239687/c38c1c7991a8/elife-77365-sa2-fig2.jpg

相似文献

[1]
CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation.

Elife. 2022-6-28

[2]
CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC.

Nat Cell Biol. 2024-3

[3]
Microtubule nucleation: The waltz between γ-tubulin ring complex and associated proteins.

Curr Opin Cell Biol. 2021-2

[4]
Molecular insight into how γ-TuRC makes microtubules.

J Cell Sci. 2021-7-15

[5]
TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes.

J Biol Chem. 2014-11-14

[6]
Insights into the assembly and activation of the microtubule nucleator γ-TuRC.

Nature. 2019-12-19

[7]
The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy.

Elife. 2020-6-15

[8]
XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex.

Nat Cell Biol. 2018-4-25

[9]
Asymmetric Molecular Architecture of the Human γ-Tubulin Ring Complex.

Cell. 2019-12-17

[10]
γ-TuRC asymmetry induces local protofilament mismatch at the RanGTP-stimulated microtubule minus end.

EMBO J. 2024-5

引用本文的文献

[1]
Biomolecular phase separation in tumorigenesis: from aberrant condensates to therapeutic vulnerabilities.

Mol Cancer. 2025-8-23

[2]
Albendazole specifically disrupts microtubules and protein turnover in the tegument of the cestode Mesocestoides corti.

PLoS Pathog. 2025-6-4

[3]
Dimerization of GAS2 mediates crosslinking of microtubules and F-actin.

EMBO J. 2025-5

[4]
Phase separation of microtubule-binding proteins - implications for neuronal function and disease.

J Cell Sci. 2024-12-15

[5]
Spermatocytes have the capacity to segregate chromosomes despite centriole duplication failure.

EMBO Rep. 2024-8

[6]
The kinesin-3 KIF1C undergoes liquid-liquid phase separation for accumulation of specific transcripts at the cell periphery.

EMBO J. 2024-8

[7]
Biomolecular Condensates Decipher Molecular Codes of Cell Fate: From Biophysical Fundamentals to Therapeutic Practices.

Int J Mol Sci. 2024-4-8

[8]
γ-TuRC asymmetry induces local protofilament mismatch at the RanGTP-stimulated microtubule minus end.

EMBO J. 2024-5

[9]
CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC.

Nat Cell Biol. 2024-3

[10]
Patronin regulates presynaptic microtubule organization and neuromuscular junction development in .

iScience. 2024-1-18

本文引用的文献

[1]
Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells.

J Cell Biol. 2021-12-6

[2]
Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation.

Nat Commun. 2020-1-14

[3]
Asymmetric Molecular Architecture of the Human γ-Tubulin Ring Complex.

Cell. 2019-12-17

[4]
Structural determinants of microtubule minus end preference in CAMSAP CKK domains.

Nat Commun. 2019-11-20

[5]
Microtubules gate tau condensation to spatially regulate microtubule functions.

Nat Cell Biol. 2019-9-2

[6]
Microtubule minus-end regulation at a glance.

J Cell Sci. 2019-6-7

[7]
Determinants of Polar versus Nematic Organization in Networks of Dynamic Microtubules and Mitotic Motors.

Cell. 2018-10-18

[8]
CAMSAP3 maintains neuronal polarity through regulation of microtubule stability.

Proc Natl Acad Sci U S A. 2018-9-6

[9]
Cryo-EM reveals the structural basis of microtubule depolymerization by kinesin-13s.

Nat Commun. 2018-4-25

[10]
Titer estimation for quality control (TEQC) method: A practical approach for optimal production of protein complexes using the baculovirus expression vector system.

PLoS One. 2018-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索