Suppr超能文献

SM22α 细胞特异性 HIF 稳定化减轻高氧诱导的新生儿肺损伤。

SM22α cell-specific HIF stabilization mitigates hyperoxia-induced neonatal lung injury.

机构信息

Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2022 Aug 1;323(2):L129-L141. doi: 10.1152/ajplung.00110.2022. Epub 2022 Jun 28.

Abstract

Though survival rates for preterm infants are improving, the incidence of chronic lung disease of infancy, or bronchopulmonary dysplasia (BPD), remains high. Histologically, BPD is characterized by larger and fewer alveoli. Hypoxia-inducible factors (HIFs) may be protective in the context of hyperoxia-induced lung injury, but the cell-specific effects of HIF expression in neonatal lung injury remain unknown. Thus, we sought to determine whether HIF stabilization in SM22α-expressing cells can limit hyperoxia-induced neonatal lung injury. We generated SM22α-specific HIF-1α-stabilized mice ( mice) by cross-breeding SM22α-promotor-driven Cre recombinase mice with prolyl hydroxylase and mice. Neonatal mice were randomized to 21% O (normoxia) or 80% O (hyperoxia) exposure for 14 days. For the hyperoxia recovery studies, neonatal mice were recovered from normoxia for an additional 10 wk. SM22α-specific HIF-1α stabilization mitigated hyperoxia-induced lung injury and preserved microvessel density compared with control mice for both neonates and adults. In mice, pulmonary artery endothelial cells (PAECs) were more proliferative and pulmonary arteries expressed more collagen IV compared with control mice, even under hyperoxic conditions. Angiopoietin-2 (Ang2) mRNA expression in pulmonary artery smooth muscle cells (PASMC) was greater in compared with control mice in both normoxia and hyperoxia. Pulmonary endothelial cells (PECs) cocultured with PASMC isolated from mice formed more tubes and branches with greater tube length compared with PEC cocultured with PASMC isolated from mice. Addition of Ang2 recombinant protein further augmented tube formation for both and PASMC. Cell-specific deletion of PHD1 and 2 selectively increases HIF-1α expression in SM22α-expressing cells and protects neonatal lung development despite prolonged hyperoxia exposure. HIF stabilization in SM22α-expressing cells preserved endothelial cell proliferation, microvascular density, increased angiopoietin-2 expression, and lung structure, suggesting a role for cell-specific HIF-1α stabilization to prevent neonatal lung injury.

摘要

尽管早产儿的存活率在提高,但婴儿期慢性肺部疾病(支气管肺发育不良,BPD)的发病率仍然很高。从组织学上看,BPD 的特征是肺泡更大且更少。缺氧诱导因子(HIFs)在高氧诱导的肺损伤中可能具有保护作用,但 HIF 在新生儿肺损伤中的细胞特异性表达的作用尚不清楚。因此,我们试图确定在 SM22α 表达细胞中稳定 HIF 是否可以限制高氧诱导的新生儿肺损伤。我们通过将 SM22α 启动子驱动的 Cre 重组酶小鼠与脯氨酰羟化酶和小鼠杂交,生成了 SM22α 特异性 HIF-1α 稳定的小鼠(小鼠)。新生小鼠被随机分为 21% O(常氧)或 80% O(高氧)暴露 14 天。对于高氧恢复研究,新生小鼠从常氧中恢复 10 周。与对照小鼠相比,SM22α 特异性 HIF-1α 稳定化减轻了高氧诱导的肺损伤并维持了微血管密度,无论是在新生儿还是成年小鼠中都是如此。在 小鼠中,与对照小鼠相比,肺动脉内皮细胞(PAECs)在高氧条件下增殖更多,肺动脉表达更多的胶原蛋白 IV。与对照小鼠相比,高氧和常氧条件下,肺动脉平滑肌细胞(PASMC)中的血管生成素-2(Ang2)mRNA 表达更高。与来自 小鼠的 PASMC 共培养的肺内皮细胞(PECs)形成的管和分支更多,管长度更长,而与来自 小鼠的 PASMC 共培养的 PEC 则更少。添加 Ang2 重组蛋白进一步增加了两种 和 PASMC 的管形成。PHD1 和 2 的细胞特异性缺失选择性地增加了 SM22α 表达细胞中的 HIF-1α 表达,并在延长高氧暴露的情况下保护新生儿肺发育。SM22α 表达细胞中 HIF 的稳定化维持了内皮细胞的增殖、微血管密度、增加了血管生成素-2 的表达,并维持了肺结构,这表明细胞特异性 HIF-1α 稳定化在预防新生儿肺损伤方面具有重要作用。

相似文献

1
SM22α cell-specific HIF stabilization mitigates hyperoxia-induced neonatal lung injury.
Am J Physiol Lung Cell Mol Physiol. 2022 Aug 1;323(2):L129-L141. doi: 10.1152/ajplung.00110.2022. Epub 2022 Jun 28.
2
Hypoxia-Inducible Factor-1α in SM22α-Expressing Cells Modulates Alveolarization.
Am J Respir Cell Mol Biol. 2023 Oct;69(4):470-483. doi: 10.1165/rcmb.2023-0045OC.
3
Loss of prolyl hydroxylase 1 and 2 in SM22α-expressing cells prevents Hypoxia-Induced pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol. 2023 Dec 1;325(6):L741-L755. doi: 10.1152/ajplung.00428.2022. Epub 2023 Oct 17.
4
Role of Axis in Neonatal Hyperoxic Lung Injury.
Oxid Med Cell Longev. 2019 Oct 22;2019:8327486. doi: 10.1155/2019/8327486. eCollection 2019.
5
Sex-specific differences in the modulation of Growth Differentiation Factor 15 (GDF15) by hyperoxia in vivo and in vitro: Role of Hif-1α.
Toxicol Appl Pharmacol. 2017 Oct 1;332:8-14. doi: 10.1016/j.taap.2017.07.016. Epub 2017 Jul 20.
7
Effects of intermittent hypoxia and hyperoxia on angiogenesis and lung development in newborn mice.
J Neonatal Perinatal Med. 2015;8(4):313-22. doi: 10.3233/NPM-15814134.
8
MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD.
Am J Physiol Lung Cell Mol Physiol. 2019 Jan 1;316(1):L144-L156. doi: 10.1152/ajplung.00372.2018. Epub 2018 Nov 1.
9
Hypoxia-inducible factor-1 stimulates postnatal lung development but does not prevent O2-induced alveolar injury.
Am J Respir Cell Mol Biol. 2015 Apr;52(4):448-58. doi: 10.1165/rcmb.2014-0037OC.
10
Activation of hypoxia-inducible factors in hyperoxia through prolyl 4-hydroxylase blockade in cells and explants of primate lung.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10212-7. doi: 10.1073/pnas.0504520102. Epub 2005 Jul 11.

引用本文的文献

1
Research progress of microvascular development in bronchopulmonary dysplasia.
Pediatr Investig. 2024 Jul 12;8(4):299-312. doi: 10.1002/ped4.12441. eCollection 2024 Dec.
2
Hyperoxia prevents the dynamic neonatal increases in lung mesenchymal cell diversity.
Sci Rep. 2024 Jan 23;14(1):2033. doi: 10.1038/s41598-023-50717-w.
3
Hypoxia-Inducible Factor-1α in SM22α-Expressing Cells Modulates Alveolarization.
Am J Respir Cell Mol Biol. 2023 Oct;69(4):470-483. doi: 10.1165/rcmb.2023-0045OC.
4
Developmental diversity and unique sensitivity to injury of lung endothelial subtypes during postnatal growth.
iScience. 2023 Jan 31;26(3):106097. doi: 10.1016/j.isci.2023.106097. eCollection 2023 Mar 17.
5
Deficiency of endothelial FGFR1 alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice.
Front Pharmacol. 2022 Nov 18;13:1039103. doi: 10.3389/fphar.2022.1039103. eCollection 2022.

本文引用的文献

1
A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is the Cell of Origin for Occlusive Pulmonary Vascular Lesions.
Circulation. 2020 Oct 20;142(16):1545-1561. doi: 10.1161/CIRCULATIONAHA.120.045750. Epub 2020 Aug 14.
3
Bronchopulmonary dysplasia.
Nat Rev Dis Primers. 2019 Nov 14;5(1):78. doi: 10.1038/s41572-019-0127-7.
4
von Willebrand factor regulation of blood vessel formation.
Blood. 2018 Jul 12;132(2):132-140. doi: 10.1182/blood-2018-01-769018. Epub 2018 Jun 4.
5
Detecting and Avoiding Problems When Using the Cre-lox System.
Trends Genet. 2018 May;34(5):333-340. doi: 10.1016/j.tig.2017.12.008. Epub 2018 Jan 11.
6
Can We Understand the Pathobiology of Bronchopulmonary Dysplasia?
J Pediatr. 2017 Nov;190:27-37. doi: 10.1016/j.jpeds.2017.08.041.
7
Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition.
Am J Physiol Lung Cell Mol Physiol. 2018 Feb 1;314(2):L256-L275. doi: 10.1152/ajplung.00096.2017. Epub 2017 Oct 26.
8
HIF2α-arginase axis is essential for the development of pulmonary hypertension.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8801-6. doi: 10.1073/pnas.1602978113. Epub 2016 Jul 18.
10
The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice.
Mol Cell Biol. 2016 May 2;36(10):1584-94. doi: 10.1128/MCB.01055-15. Print 2016 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验