Ruiz Bryan, Sauviac Laurent, Brouquisse Renaud, Bruand Claude, Meilhoc Eliane
Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France.
Institut Sophia Agrobiotech (ISA), INRAE, CNRS, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
Mol Plant Microbe Interact. 2022 Oct;35(10):887-892. doi: 10.1094/MPMI-05-22-0118-SC. Epub 2022 Sep 29.
Nitric oxide (NO) is a small ubiquitous gaseous molecule that has been found in many host-pathogen interactions. NO has been shown to be part of the defense arsenal of animal cells and more recently of plant cells. To fight this molecular weapon, pathogens have evolved responses consisting of adaptation to NO or degradation of this toxic molecule. More recently, it was shown that NO could also be produced by the pathogen and contributes likewise to the success of the host cell infection. NO is also present during symbiotic interactions. Despite growing knowledge about the role of NO during friendly interactions, data on the specificity of action of NO produced by each partner are scarce, partly due to the multiplicity of NO production systems. In the nitrogen-fixing symbiosis between the soil bacterium and the model legume , NO has been detected at all steps of the interaction, where it displays various roles. Both partners contribute to NO production inside the legume root nodules where nitrogen fixation occurs. The study focuses on the role of bacterial NO in this interaction. We used a genetic approach to identify bacterial NO sources in the symbiotic context and to test the phenotype in planta of bacterial mutants affected in NO production. Our results show that only denitrification is a source of bacterial NO in nodules, giving insight into the role of bacteria-derived NO at different steps of the symbiotic interaction. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
一氧化氮(NO)是一种普遍存在的小分子气体分子,已在许多宿主-病原体相互作用中被发现。NO已被证明是动物细胞防御武器库的一部分,最近也被证明是植物细胞防御武器库的一部分。为了对抗这种分子武器,病原体已经进化出了包括适应NO或降解这种有毒分子的反应。最近,研究表明病原体也可以产生NO,并且同样有助于宿主细胞感染的成功。在共生相互作用中也存在NO。尽管人们对NO在友好相互作用中的作用的了解越来越多,但关于每个伙伴产生的NO的作用特异性的数据却很少,部分原因是NO产生系统的多样性。在土壤细菌与模式豆科植物之间的固氮共生中,在相互作用的所有阶段都检测到了NO,它在其中发挥着各种作用。在发生固氮的豆科植物根瘤内,双方伙伴都对NO的产生有贡献。该研究聚焦于细菌产生的NO在这种相互作用中的作用。我们采用遗传学方法来确定共生环境中细菌产生NO的来源,并测试影响NO产生的细菌突变体在植物体内的表型。我们的结果表明,在根瘤中只有反硝化作用是细菌产生NO的来源,这有助于深入了解细菌来源的NO在共生相互作用不同阶段的作用。[公式:见正文] 版权所有© 2022作者。本文是一篇根据知识共享署名-非商业性使用-禁止演绎4.0国际许可协议分发的开放获取文章。