Department of Laboratory Medicine, Hôtel-Dieu de France University Hospital, Beirut, Lebanon.
Directorate, Department of Laboratory Medicine, Hôtel Dieu de France University Hospital, Beirut, Lebanon.
Lab Med. 2022 Nov 3;53(6):629-635. doi: 10.1093/labmed/lmac049.
We aim to prospectively validate a previously developed machine learning algorithm for low-density lipoprotein cholesterol (LDL-C) estimation.
We retrospectively and prospectively evaluated a machine learning algorithm based on k-nearest neighbors (KNN) according to age, sex, healthcare setting, and triglyceridemia against a direct LDL-C assay. The agreement of low-density lipoprotein-k-nearest neighbors (LDL-KNN) with the direct measurement was assessed using intraclass correlation coefficient (ICC).
The analysis comprised 31,853 retrospective and 6599 prospective observations, with a mean age of 54.2 ± 17.2 years. LDL-KNN exhibited an ICC greater than 0.9 independently of age, sex, and disease status. LDL-KNN was in satisfactory agreement with direct LDL-C in observations with normal triglyceridemia and mild hypertriglyceridemia but displayed an ICC slightly below 0.9 in severely hypertriglyceridemic patients and lower in very low LDL-C observations.
LDL-KNN performs robustly across ages, genders, healthcare settings, and triglyceridemia. Further algorithm development is needed for very low LDL-C observations.
我们旨在前瞻性验证先前开发的用于估算低密度脂蛋白胆固醇(LDL-C)的机器学习算法。
我们根据年龄、性别、医疗保健环境和三酰甘油水平,对基于 k-最近邻(KNN)的机器学习算法进行回顾性和前瞻性评估,以与直接 LDL-C 测定法进行比较。使用组内相关系数(ICC)评估 LDL-KNN 与直接测量的一致性。
该分析包括 31853 项回顾性和 6599 项前瞻性观察,平均年龄为 54.2±17.2 岁。无论年龄、性别和疾病状态如何,LDL-KNN 的 ICC 均大于 0.9。在三酰甘油正常和轻度升高的观察中,LDL-KNN 与直接 LDL-C 具有良好的一致性,但在严重高甘油三酯血症患者中 ICC 略低于 0.9,在极低 LDL-C 观察中 ICC 较低。
LDL-KNN 在年龄、性别、医疗保健环境和三酰甘油水平方面表现稳健。对于极低 LDL-C 观察,需要进一步开发算法。