文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于模糊物元分析的脾虚大鼠肠-免疫调节功能地黄蜜炙品与蜜炙黄芪比较研究

Comparative study on the gastrointestinal- and immune- regulation functions of Hedysari Radix Paeparata Cum Melle and Astragali Radix Praeparata cum Melle in rats with spleen-qi deficiency, based on fuzzy matter-element analysis.

机构信息

College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China.

Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China.

出版信息

Pharm Biol. 2022 Dec;60(1):1237-1254. doi: 10.1080/13880209.2022.2086990.


DOI:10.1080/13880209.2022.2086990
PMID:35763552
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9246251/
Abstract

CONTEXT: Hedysari Radix Praeparata Cum Melle (HRPCM) and Astragali Radix Praeparata Cum Melle (ARPCM) are used interchangeably in clinics to treat spleen-qi deficiency (SQD) symptom mainly including gastrointestinal dysfunction and decreased immunity, which has unknown differences in efficacy. OBJECTIVE: To investigate the differences between HRPCM and ARPCM on intervening gastrointestinal- and immune-function with SQD syndrome. MATERIALS AND METHODS: After the SQD model was established, the Sprague-Dawley (SD) rats were randomly divided into nine groups ( = 10): normal; model; Bu-Zhong-Yi-Qi Pills; 18.9, 12.6 and 6.3 g/kg dose groups of HRPCM and ARPCM. Gastrointestinal function including d-xylose, gastrin, amylase vasoactive intestinal peptide, motilin, pepsin, H/K-ATPase, Na/K-ATPase, sodium-glucose cotransporter 1 (SGLT1), glucose transporter 2 (GLUT2) and immune function including spleen and thymus index, blood routine, interleukin (IL)-2, IL-6, interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), immunoglobulin (Ig) M, IgA, IgG and delayed-type hypersensitivity (DTH) were detected. Finally, the efficacy differences were analysed comprehensively by the fuzzy matter-element method. RESULTS: In regulating immune, the doses differences in efficacy between HRPCM and ARPCM showed in the high-dose (18.9 g/kg), but there were no differences in the middle- and low- dose (12.6 and 6.37 g/kg); the efficacy differences were primarily reflected in levels of IL-6, IFN-γ, TNF-α and IgM in serum, and the mRNA expression of IL-6 and IFN-γ in the spleen. In regulating gastrointestinal, the efficacy differences were primarily reflected in the levels of D-xylose, MTL, and GAS in serum, and the mRNA and protein expression of SGLT1 and GLUT2 in jejunum and ileum. DISCUSSION AND CONCLUSIONS: HRPCM is more effective than ARPCM on regulating gastrointestinal function and immune function with SQD syndrome. Therefore, we propose that HRPCM should be mainly used to treat SQD syndrome in the future.

摘要

背景:炙甘草与蜜制黄芪在临床上常可互换使用,用于治疗主要表现为胃肠功能紊乱和免疫力下降的脾气虚证,但其疗效尚不清楚。

目的:探讨炙甘草与蜜制黄芪干预脾气虚证胃肠-免疫功能的差异。

材料与方法:脾气虚证模型建立后,将 SD 大鼠随机分为 9 组(每组 10 只):正常组;模型组;补中益气丸组;炙甘草与蜜制黄芪高、中、低剂量组(18.9、12.6 和 6.3 g/kg)。检测胃肠功能[包括血清 D-木糖、胃泌素、淀粉酶、血管活性肠肽、胃动素、胃蛋白酶、H+/K+-ATP 酶、Na+/K+-ATP 酶、钠-葡萄糖协同转运蛋白 1(SGLT1)、葡萄糖转运蛋白 2(GLUT2)]和免疫功能[包括脾、胸腺指数、血常规、白细胞介素(IL)-2、IL-6、干扰素-γ(IFN-γ)、肿瘤坏死因子-α(TNF-α)、免疫球蛋白(Ig)M、IgA、IgG 和迟发型超敏反应(DTH)]。最后,采用模糊物元法综合分析疗效差异。

结果:在调节免疫方面,炙甘草与蜜制黄芪高、中、低剂量组(18.9、12.6 和 6.3 g/kg)疗效差异主要体现在血清中 IL-6、IFN-γ、TNF-α和 IgM 水平以及脾中 IL-6 和 IFN-γ mRNA 表达上;在调节胃肠功能方面,疗效差异主要体现在血清中 D-木糖、胃动素和胃泌素水平以及空肠和回肠中 SGLT1 和 GLUT2 mRNA 和蛋白表达上。

讨论与结论:炙甘草在调节脾气虚证胃肠功能和免疫功能方面的作用优于蜜制黄芪。因此,我们建议在未来的临床应用中,炙甘草应主要用于脾气虚证的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/be4fc58bad9f/IPHB_A_2086990_F0017_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/5e070c094600/IPHB_A_2086990_F0001_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/e34fbe437463/IPHB_A_2086990_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/59d7580ed832/IPHB_A_2086990_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/d21a3280799a/IPHB_A_2086990_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/1c20a8eb77e3/IPHB_A_2086990_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/51e9ac0228bc/IPHB_A_2086990_F0006_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/88131ed83f64/IPHB_A_2086990_F0007_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/8a9b150a9581/IPHB_A_2086990_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/1d004176810f/IPHB_A_2086990_F0009_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/328eba3ce756/IPHB_A_2086990_F0010_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/9f83b83d66bd/IPHB_A_2086990_F0011_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/d2c1f1a37505/IPHB_A_2086990_F0012_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/8f9d9c28fddd/IPHB_A_2086990_F0013_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/de62ff021319/IPHB_A_2086990_F0014_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/d1666041a22c/IPHB_A_2086990_F0015_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/ccdaa6adfe07/IPHB_A_2086990_F0016_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/be4fc58bad9f/IPHB_A_2086990_F0017_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/5e070c094600/IPHB_A_2086990_F0001_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/e34fbe437463/IPHB_A_2086990_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/59d7580ed832/IPHB_A_2086990_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/d21a3280799a/IPHB_A_2086990_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/1c20a8eb77e3/IPHB_A_2086990_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/51e9ac0228bc/IPHB_A_2086990_F0006_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/88131ed83f64/IPHB_A_2086990_F0007_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/8a9b150a9581/IPHB_A_2086990_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/1d004176810f/IPHB_A_2086990_F0009_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/328eba3ce756/IPHB_A_2086990_F0010_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/9f83b83d66bd/IPHB_A_2086990_F0011_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/d2c1f1a37505/IPHB_A_2086990_F0012_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/8f9d9c28fddd/IPHB_A_2086990_F0013_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/de62ff021319/IPHB_A_2086990_F0014_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/d1666041a22c/IPHB_A_2086990_F0015_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/ccdaa6adfe07/IPHB_A_2086990_F0016_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42e/9246251/be4fc58bad9f/IPHB_A_2086990_F0017_C.jpg

相似文献

[1]
Comparative study on the gastrointestinal- and immune- regulation functions of Hedysari Radix Paeparata Cum Melle and Astragali Radix Praeparata cum Melle in rats with spleen-qi deficiency, based on fuzzy matter-element analysis.

Pharm Biol. 2022-12

[2]
Identifications of metabolic differences between Hedysari Radix Praeparata Cum Melle and Astragali Radix Praeparata Cum Melle for spleen-qi deficiency rats: A comparative study.

J Pharm Biomed Anal. 2023-11-30

[3]
[Comparative study of Astragali Radix Praeparata cum Melle and Hedysari Radix Praeparata cum Melle on spleen Qi deficiency rats].

Zhongguo Zhong Yao Za Zhi. 2021-11

[4]
A screening strategy for bioactive components of Bu-Zhong-Yi-Qi-Tang regulating spleen-qi deficiency based on "endobiotics-targets-xenobiotics" association network.

J Ethnopharmacol. 2023-10-5

[5]
A metabonomics and lipidomics based network pharmacology study of qi-tonifying effects of honey-processed Astragalus on spleen qi deficiency rats.

J Chromatogr B Analyt Technol Biomed Life Sci. 2020-4-7

[6]
[Rapid quality evaluation of Glycyrrhizae Radix et Rhizoma and Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle based on color digitization and multi-component determination].

Zhongguo Zhong Yao Za Zhi. 2022-12

[7]
Effects on neuroendocrinoimmune network of Lizhong Pill in the reserpine induced rats with spleen deficiency in traditional Chinese medicine.

J Ethnopharmacol. 2010-10-15

[8]
Analysis of the restorative effect of Bu-zhong-yi-qi-tang in the spleen-qi deficiency rat model using (1)H-NMR-based metabonomics.

J Ethnopharmacol. 2013-12-12

[9]
Material Basis of the Difference between Hedysari Radix and Honey-Processed Hedysari Radix in Buzhong Yiqi.

Evid Based Complement Alternat Med. 2020-12-2

[10]
Network Pharmacology to Uncover the Biological Basis of Spleen Qi Deficiency Syndrome and Herbal Treatment.

Oxid Med Cell Longev. 2020

引用本文的文献

[1]
Correlation between the immune response to COVID-19 vaccines and the constitutions of traditional Chinese medicine.

Hum Vaccin Immunother. 2025-12

[2]
Study on the Mechanism and Dose-Effect Relationship of Flavonoids in Different Extracts of Radix Hedysari Against Gastrointestinal Injury Induced by Chemotherapy.

Pharmaceuticals (Basel). 2025-7-20

[3]
Mechanism of hedysari radix praeparata cum melle and curcumae rhizoma herb pair in colitis-associated colorectal cancer through the MAPK/NF-κB signaling pathway: an investigation and .

Front Chem. 2025-5-8

[4]
From Traditional Efficacy to Drug Design: A Review of Astragali Radix.

Pharmaceuticals (Basel). 2025-3-14

[5]
BuZhong YiQi Formula Alleviates Postprandial Hyperglycemia in T2DM Rats by Inhibiting α-Amylase and α-Glucosidase In Vitro and In Vivo.

Pharmaceuticals (Basel). 2025-2-2

[6]
Flavonoids contribute most to discriminating aged Guang Chenpi ( 'Chachi') by spectrum-effect relationship analysis between LC-Q-Orbitrap/MS fingerprint and ameliorating spleen deficiency activity.

Food Sci Nutr. 2023-9-21

[7]
Discrimination of Radix Astragali from Different Growth Patterns, Origins, Species, and Growth Years by an H-NMR Spectrogram of Polysaccharide Analysis Combined with Chemical Pattern Recognition and Determination of Its Polysaccharide Content and Immunological Activity.

Molecules. 2023-8-15

本文引用的文献

[1]
Efficacy of Jianpiyangxue granule on gastrointestinal autonomic nerve dysfunction and its impact on adverse reactions.

Am J Transl Res. 2021-11-15

[2]
Exploring the impact of intestinal ion transport on the gut microbiota.

Comput Struct Biotechnol J. 2020-12-16

[3]
Material Basis of the Difference between Hedysari Radix and Honey-Processed Hedysari Radix in Buzhong Yiqi.

Evid Based Complement Alternat Med. 2020-12-2

[4]
Effects of polysaccharide on intestinal inflammatory damage in goslings infected with gosling plague.

Br Poult Sci. 2021-6

[5]
Network Pharmacology to Uncover the Biological Basis of Spleen Qi Deficiency Syndrome and Herbal Treatment.

Oxid Med Cell Longev. 2020

[6]
Requirements for cDC2 positioning in blood-exposed regions of the neonatal and adult spleen.

J Exp Med. 2020-11-2

[7]
Integration of Fuzzy Matter-Element Method and 3D-QSAR Model for Generation of Environmentally Friendly Quinolone Derivatives.

Int J Environ Res Public Health. 2020-5-6

[8]
A metabonomics and lipidomics based network pharmacology study of qi-tonifying effects of honey-processed Astragalus on spleen qi deficiency rats.

J Chromatogr B Analyt Technol Biomed Life Sci. 2020-4-7

[9]
Metabolomic study of raw and bran-fried Atractylodis Rhizoma on rats with spleen deficiency.

J Pharm Biomed Anal. 2020-4-15

[10]
BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer's disease.

FASEB J. 2019-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索