Department of Surgery, Boston University School of Medicine, Boston, MA, USA.
Institute for Health System Innovation and Policy, Boston University, 601, 656 Beacon Street, Boston, MA, 02215, USA.
Surg Endosc. 2021 Jan;35(1):182-191. doi: 10.1007/s00464-020-07378-x. Epub 2020 Jan 17.
Postoperative gastrointestinal leak and venous thromboembolism (VTE) are devastating complications of bariatric surgery. The performance of currently available predictive models for these complications remains wanting, while machine learning has shown promise to improve on traditional modeling approaches. The purpose of this study was to compare the ability of two machine learning strategies, artificial neural networks (ANNs), and gradient boosting machines (XGBs) to conventional models using logistic regression (LR) in predicting leak and VTE after bariatric surgery.
ANN, XGB, and LR prediction models for leak and VTE among adults undergoing initial elective weight loss surgery were trained and validated using preoperative data from 2015 to 2017 from Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database. Data were randomly split into training, validation, and testing populations. Model performance was measured by the area under the receiver operating characteristic curve (AUC) on the testing data for each model.
The study cohort contained 436,807 patients. The incidences of leak and VTE were 0.70% and 0.46%. ANN (AUC 0.75, 95% CI 0.73-0.78) was the best-performing model for predicting leak, followed by XGB (AUC 0.70, 95% CI 0.68-0.72) and then LR (AUC 0.63, 95% CI 0.61-0.65, p < 0.001 for all comparisons). In detecting VTE, ANN, and XGB, LR achieved similar AUCs of 0.65 (95% CI 0.63-0.68), 0.67 (95% CI 0.64-0.70), and 0.64 (95% CI 0.61-0.66), respectively; the performance difference between XGB and LR was statistically significant (p = 0.001).
ANN and XGB outperformed traditional LR in predicting leak. These results suggest that ML has the potential to improve risk stratification for bariatric surgery, especially as techniques to extract more granular data from medical records improve. Further studies investigating the merits of machine learning to improve patient selection and risk management in bariatric surgery are warranted.
术后胃肠道漏和静脉血栓栓塞症(VTE)是减重手术的严重并发症。目前可用的这些并发症预测模型的性能仍不尽如人意,而机器学习在改进传统建模方法方面显示出了希望。本研究旨在比较两种机器学习策略,人工神经网络(ANN)和梯度提升机(XGB),以及使用逻辑回归(LR)在预测减重手术后漏和 VTE 方面的能力。
使用 2015 年至 2017 年代谢和减重手术认证和质量改进计划数据库中成年人初次接受选择性减肥手术的术前数据,训练和验证 ANN、XGB 和 LR 预测模型。数据随机分为训练、验证和测试人群。每个模型在测试数据上的接收者操作特征曲线(ROC)下面积(AUC)来衡量模型性能。
研究队列包含 436807 名患者。漏和 VTE 的发生率分别为 0.70%和 0.46%。ANN(AUC 0.75,95%CI 0.73-0.78)是预测漏的表现最好的模型,其次是 XGB(AUC 0.70,95%CI 0.68-0.72),然后是 LR(AUC 0.63,95%CI 0.61-0.65,p<0.001 用于所有比较)。在检测 VTE 时,ANN 和 XGB 的 LR 达到相似的 AUC 值 0.65(95%CI 0.63-0.68)、0.67(95%CI 0.64-0.70)和 0.64(95%CI 0.61-0.66),XGB 和 LR 之间的性能差异具有统计学意义(p=0.001)。
ANN 和 XGB 在预测漏方面优于传统的 LR。这些结果表明,机器学习有可能改善减重手术的风险分层,尤其是随着从病历中提取更细粒度数据的技术的提高。进一步研究机器学习在改善减重手术患者选择和风险管理方面的优点是必要的。