Häuser Luca, Erben Johannes, Pillot Guillaume, Kerzenmacher Sven, Dreher Wolfgang, Küstermann Ekkehard
Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
Electrochaea GmbH 82152 Planegg Germany.
RSC Adv. 2022 Jun 15;12(28):17784-17793. doi: 10.1039/d2ra01162j. eCollection 2022 Jun 14.
Identifying the limiting processes of electroactive biofilms is key to improve the performance of bioelectrochemical systems (BES). For modelling and developing BES, spatial information of transport phenomena and biofilm distribution are required and can be determined by Magnetic Resonance Imaging (MRI) , and even inside opaque porous electrodes. A custom bioelectrochemical cell was designed that allows MRI measurements with a spatial resolution of 50 μm inside a 500 μm thick porous carbon electrode. The MRI data showed that only a fraction of the electrode pore space is colonized by the MR-1 biofilm. The maximum biofilm density was observed inside the porous electrode close to the electrode-medium interface. Inside the biofilm, mass transport by diffusion is lowered down to 45% compared to the bulk growth medium. The presented data and the methods can be used for detailed models of bioelectrochemical systems and for the design of improved electrode structures.
识别电活性生物膜的限制过程是提高生物电化学系统(BES)性能的关键。为了对BES进行建模和开发,需要传输现象和生物膜分布的空间信息,而这些信息可以通过磁共振成像(MRI)来确定,甚至在不透明的多孔电极内部也能确定。设计了一种定制的生物电化学池,它能够在500μm厚的多孔碳电极内部以50μm的空间分辨率进行MRI测量。MRI数据表明,只有一部分电极孔隙空间被MR-1生物膜占据。在靠近电极-介质界面的多孔电极内部观察到了最大生物膜密度。在生物膜内部,与大量生长培养基相比,扩散传质降低至45%。所呈现的数据和方法可用于生物电化学系统的详细模型以及改进电极结构的设计。