Suppr超能文献

电子穿梭体依赖的生物膜形成与生物电流产生:浓度效应及机制解析

Electron shuttle-dependent biofilm formation and biocurrent generation: Concentration effects and mechanistic insights.

作者信息

Zhu Xiao, Dou Fei, Long Mingliang, Wang Xinxin, Liu Wei, Li Fangbai, Liu Tongxu, Wu Yundang

机构信息

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China.

出版信息

Front Microbiol. 2023 Mar 1;14:1070800. doi: 10.3389/fmicb.2023.1070800. eCollection 2023.

Abstract

INTRODUCTION

Electron shuttles (ESs) play a key role in extracellular electron transfer (EET) in MR-1. However, the quantification relationship between ES concentration, biofilm formation, and biocurrent generation has not been clarified.

METHODS

In this study, 9,10-anthraquinone-2-sulfonic acid (AQS)-mediated EET and biofilm formation were evaluated at different AQS concentrations in bioelectrochemical systems (BESs) with MR-1.

RESULTS AND DISCUSSION

Both the biofilm biomass (9- to 17-fold) and biocurrent (21- to 80-fold) were substantially enhanced by exogenous AQS, suggesting the dual ability of AQS to promote both biofilm formation and electron shuttling. Nevertheless, biofilms barely grew without the addition of exogenous AQS, revealing that biofilm formation by MR-1 is highly dependent on electron shuttling. The biofilm growth was delayed in a BES of 2,000 μM AQS, which is probably because the redundant AQS in the bulk solution acted as a soluble electron acceptor and delayed biofilm formation. In addition, the maximum biocurrent density in BESs with different concentrations of AQS was fitted to the Michaelis-Menten equation ( = 0.97), demonstrating that microbial-catalyzed ES bio-reduction is the key limiting factor of the maximum biocurrent density in BESs. This study provided a fundamental understanding of ES-mediated EET, which could be beneficial for the enrichment of electroactive biofilms, the rapid start-up of microbial fuel cells (MFCs), and the design of BESs for wastewater treatment.

摘要

引言

电子穿梭体(ESs)在MR-1的胞外电子转移(EET)中起关键作用。然而,ES浓度、生物膜形成和生物电流产生之间的定量关系尚未明确。

方法

在本研究中,在含有MR-1的生物电化学系统(BESs)中,评估了不同浓度的9,10-蒽醌-2-磺酸(AQS)介导的EET和生物膜形成。

结果与讨论

外源AQS显著提高了生物膜生物量(9至17倍)和生物电流(21至80倍),表明AQS具有促进生物膜形成和电子穿梭的双重能力。然而,不添加外源AQS时生物膜几乎不生长,这表明MR-1形成生物膜高度依赖于电子穿梭。在2000 μM AQS的BES中生物膜生长延迟,这可能是因为本体溶液中多余的AQS作为可溶性电子受体,延迟了生物膜的形成。此外,将不同浓度AQS的BES中的最大生物电流密度拟合到米氏方程(= 0.97),表明微生物催化的ES生物还原是BES中最大生物电流密度的关键限制因素。本研究为ES介导的EET提供了基本认识,这可能有利于电活性生物膜的富集、微生物燃料电池(MFCs)的快速启动以及用于废水处理的BES的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db85/10016380/8a9e453e60c2/fmicb-14-1070800-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验