Suppr超能文献

机器学习方法和数据库在药物-靶标相互作用预测中的应用:综述论文。

Machine learning approaches and databases for prediction of drug-target interaction: a survey paper.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.

Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Brief Bioinform. 2021 Jan 18;22(1):247-269. doi: 10.1093/bib/bbz157.

Abstract

The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug-target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.

摘要

药物与靶点相互作用的预测在药物发现过程中起着关键作用。为了避免昂贵、耗时且并非总是确定的实验,需要开发新的、有效的预测方法来通过实验单独确定药物-靶点相互作用(DTI)。这些方法应该能够及时识别潜在的 DTI。在本文中,我们描述了 DTI 预测任务所需的数据,然后列出了一个全面的目录,其中包括已被提出并用于预测 DTI 的机器学习方法和数据库。我们还简要讨论了每组方法的优缺点。最后,突出了使用机器学习方法预测 DTI 时可能面临的挑战,并就重要的未来研究方向提供了一些见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ddf/7820849/acf34ba54a3e/bbz157f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验