文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MexB 型多重药物外排转运蛋白对喹诺酮类抗生素的识别

Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of .

机构信息

Department of Physics, University of Cagliari, Citt. Universitaria, I-09042 Monserrato (Cagliari), Italy.

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA.

出版信息

Phys Chem Chem Phys. 2022 Jul 13;24(27):16566-16575. doi: 10.1039/d2cp00951j.


DOI:10.1039/d2cp00951j
PMID:35766032
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9278589/
Abstract

The drug/proton antiporter MexB is the engine of the major efflux pump MexAB-OprM in . This protein is known to transport a large variety of compounds, including antibiotics, thus conferring a multi-drug resistance phenotype. Due to the difficulty of producing co-crystals, only two X-ray structures of MexB in a complex with ligands are available to date, and mechanistic aspects are largely hypothesized based on the body of data collected for the homologous protein AcrB of . In particular, a recent study (Ornik-Cha, Wilhelm, Kobylka , 2021, , 6919) reported a co-crystal structure of AcrB in a complex with levofloxacin, an antibiotic belonging to the important class of (fluoro)-quinolones. In this work, we performed a systematic ensemble docking campaign coupled to the cluster analysis and molecular-mechanics optimization of docking poses to study the interaction between 36 quinolone antibiotics and MexB. We additionally investigated surface complementarity between each molecule and the transporter and thoroughly assessed the computational protocol adopted against the known experimental data. Our study reveals different binding preferences of the investigated compounds towards the sub-sites of the large deep binding pocket of MexB, supporting the hypothesis that MexB substrates oscillate between different binding modes with similar affinity. Interestingly, small changes in the molecular structure translate into significant differences in MexB-quinolone interactions. All the predicted binding modes are available for download and visualization at the following link: https://www.dsf.unica.it/dock/mexb/quinolones.

摘要

药物/质子反转运蛋白 MexB 是. 中主要外排泵 MexAB-OprM 的引擎。该蛋白已知可转运多种化合物,包括抗生素,从而赋予其多药耐药表型。由于难以产生共晶,迄今为止仅获得了两种与配体结合的 MexB 的 X 射线结构,并且基于. 同源蛋白 AcrB 收集的数据,机械方面在很大程度上是假设的。特别是,最近的一项研究(Ornik-Cha、Wilhelm、Kobylka,2021 年, ,6919)报道了 AcrB 与左氧氟沙星(一种属于重要(氟)喹诺酮类抗生素的抗生素)复合物的共晶结构。在这项工作中,我们进行了系统的整体对接计算,结合对接构象的聚类分析和分子力学优化,研究了 36 种喹诺酮类抗生素与 MexB 之间的相互作用。我们还研究了每个分子与转运蛋白之间的表面互补性,并根据已知的实验数据对采用的计算方案进行了全面评估。我们的研究揭示了研究化合物对 MexB 大深结合口袋亚位点的不同结合偏好,支持 MexB 底物在相似亲和力的不同结合模式之间振荡的假设。有趣的是,分子结构的微小变化会导致 MexB-喹诺酮相互作用的显著差异。所有预测的结合模式均可在以下链接下载和可视化:https://www.dsf.unica.it/dock/mexb/quinolones。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/9905b4a8c7f8/d2cp00951j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/6a9f09d68e6b/d2cp00951j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/233a39b42d11/d2cp00951j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/986dc3b6dba5/d2cp00951j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/8bced340cff0/d2cp00951j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/76b46b1c0fed/d2cp00951j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/bd73e4d7f2c8/d2cp00951j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/9905b4a8c7f8/d2cp00951j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/6a9f09d68e6b/d2cp00951j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/233a39b42d11/d2cp00951j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/986dc3b6dba5/d2cp00951j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/8bced340cff0/d2cp00951j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/76b46b1c0fed/d2cp00951j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/bd73e4d7f2c8/d2cp00951j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e0f/9278589/9905b4a8c7f8/d2cp00951j-f7.jpg

相似文献

[1]
Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of .

Phys Chem Chem Phys. 2022-7-13

[2]
Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation.

PLoS One. 2014-7-15

[3]
Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa.

J Bacteriol. 2004-3

[4]
Structural basis for the inhibition of bacterial multidrug exporters.

Nature. 2013-6-30

[5]
Molecular determinants of avoidance and inhibition of MexB efflux pump.

mBio. 2023-8-31

[6]
Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa.

J Mol Biol. 2009-5-29

[7]
Spatial Characteristics of the Efflux Pump MexB Determine Inhibitor Binding.

Antimicrob Agents Chemother. 2022-11-15

[8]
Exploring transmembrane allostery in the MexB: DB08385 variant as a promising inhibitor-like candidate against antibiotic resistance: a computational study.

Phys Chem Chem Phys. 2024-6-19

[9]
Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR.

Arch Iran Med. 2015-2

[10]
Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex.

Nat Commun. 2020-10-2

引用本文的文献

[1]
Mutations in the proximal binding site and F-loop of AdeJ confer resistance to efflux pump inhibitors.

Antimicrob Agents Chemother. 2025-8-6

[2]
Evaluating the Link between Efflux Pump Expression and Motility Phenotypes in Treated with Virulence Inhibitors.

ACS Infect Dis. 2025-8-8

[3]
Advances in methods and concepts provide new insight into antibiotic fluxes across the bacterial membrane.

Commun Biol. 2024-11-14

[4]
Molecular Properties of Virulence and Antibiotic Resistance of Causing Clinically Critical Infections.

Pathogens. 2024-10-3

[5]
Thiopseudomonas acetoxidans sp. nov., an aerobic acetic and butyric acids oxidizer isolated from anaerobic fermentation liquid of food waste.

Antonie Van Leeuwenhoek. 2024-2-13

[6]
Proportions of and Antimicrobial-Resistant Among Patients With Surgical Site Infections in China: A Systematic Review and Meta-analysis.

Open Forum Infect Dis. 2023-12-18

[7]
Identification of efflux pump inhibitors for Pseudomonas aeruginosa MexAB-OprM via ligand-based pharmacophores, 2D-QSAR, molecular docking, and molecular dynamics approaches.

Mol Divers. 2024-10

[8]
The Art of War with : Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy.

Antibiotics (Basel). 2023-8-9

[9]
The Benefits and Challenges of Antibiotics-Non-Steroidal Anti-Inflammatory Drugs Non-Covalent Reaction.

Molecules. 2023-4-23

[10]
Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies?

Microbiology (Reading). 2023-3

本文引用的文献

[1]
AB-DB: Force-Field parameters, MD trajectories, QM-based data, and Descriptors of Antimicrobials.

Sci Data. 2022-4-1

[2]
Assessing antimicrobial resistance occurrence in the Portuguese food system: Poultry, pigs and derived food, 2014-2018.

Zoonoses Public Health. 2022-6

[3]
Molecular Mechanism for the Allosteric Inhibition of the Human Serotonin Transporter by Antidepressant Escitalopram.

ACS Chem Neurosci. 2022-2-2

[4]
Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms.

Nat Commun. 2021-11-25

[5]
Diversity detected in commensals at host and farm level reveals implications for national antimicrobial resistance surveillance programmes.

J Antimicrob Chemother. 2022-2-2

[6]
Fighting Antibiotic Resistance in Hospital-Acquired Infections: Current State and Emerging Technologies in Disease Prevention, Diagnostics and Therapy.

Front Microbiol. 2021-7-21

[7]
AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings.

J Chem Inf Model. 2021-8-23

[8]
GNINA 1.0: molecular docking with deep learning.

J Cheminform. 2021-6-9

[9]
Molecular Mechanics Study of Flow and Surface Influence in Ligand-Protein Association.

Front Mol Biosci. 2021-5-10

[10]
Understanding the Polypharmacological Profiles of Triple Reuptake Inhibitors by Molecular Simulation.

ACS Chem Neurosci. 2021-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索