Suppr超能文献

基于偶氮苯的太阳能热燃料:综述

Azobenzene-Based Solar Thermal Fuels: A Review.

作者信息

Zhang Bo, Feng Yiyu, Feng Wei

机构信息

School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China.

Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, People's Republic of China.

出版信息

Nanomicro Lett. 2022 Jun 29;14(1):138. doi: 10.1007/s40820-022-00876-8.

Abstract

The energy storage mechanism of azobenzene is based on the transformation of molecular cis and trans isomerization, while NBD/QC, DHA/VHF, and fulvalene dimetal complexes realize the energy storage function by changing the molecular structure. Acting as "molecular batteries," they can exhibit excellent charging and discharging behavior by converting between trans and cis isomers or changing molecular structure upon absorption of ultraviolet light. Key properties determining the performance of STFs are stored energy, energy density, half-life, and solar energy conversion efficiency. This review is aiming to provide a comprehensive and authoritative overview on the recent advancements of azobenzene molecular photoswitch system in STFs fields, including derivatives and carbon nano-templates, which is emphasized for its attractive performance. Although the energy storage performance of Azo-STFs has already reached the level of commercial lithium batteries, the cycling capability and controllable release of energy still need to be further explored. For this, some potential solutions to the cycle performance are proposed, and the methods of azobenzene controllable energy release are summarized. Moreover, energy stored by STFs can be released in the form of mechanical energy, which in turn can also promote the release of thermal energy from STFs, implying that there could be a relationship between mechanical and thermal energy in Azo-STFs, providing a potential direction for further research on Azo-STFs.

摘要

偶氮苯的能量存储机制基于分子顺反异构化的转变,而NBD/QC、DHA/VHF和富瓦烯双金属配合物则通过改变分子结构来实现能量存储功能。作为“分子电池”,它们可以通过在反式和顺式异构体之间转换或在吸收紫外光时改变分子结构,展现出优异的充放电行为。决定储能功能材料(STFs)性能的关键特性包括储能、能量密度、半衰期和太阳能转换效率。本综述旨在全面且权威地概述偶氮苯分子光开关系统在储能功能材料领域的最新进展,包括其衍生物和碳纳米模板,因其具有吸引人的性能而受到强调。尽管偶氮苯储能功能材料的储能性能已达到商用锂电池的水平,但循环能力和能量的可控释放仍有待进一步探索。为此,提出了一些解决循环性能的潜在方案,并总结了偶氮苯可控能量释放的方法。此外,储能功能材料存储的能量可以以机械能的形式释放,这反过来又可以促进储能功能材料中热能的释放,这意味着偶氮苯储能功能材料中的机械能和热能之间可能存在关联,为偶氮苯储能功能材料的进一步研究提供了一个潜在方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8f/9243213/b045e7d410e8/40820_2022_876_Fig1_HTML.jpg

相似文献

1
Azobenzene-Based Solar Thermal Fuels: A Review.
Nanomicro Lett. 2022 Jun 29;14(1):138. doi: 10.1007/s40820-022-00876-8.
2
Water-Soluble Azobenzene-Based Solar Thermal Fuels with Improved Long-Term Energy Storage and Energy Density.
ACS Appl Mater Interfaces. 2024 Dec 11;16(49):66837-66845. doi: 10.1021/acsami.3c12264. Epub 2023 Nov 9.
3
Liquid and Photoliquefiable Azobenzene Derivatives for Solvent-free Molecular Solar Thermal Fuels.
ACS Appl Mater Interfaces. 2022 Aug 10;14(31):35623-35634. doi: 10.1021/acsami.2c07870. Epub 2022 Aug 2.
4
Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.
ACS Appl Mater Interfaces. 2017 Mar 15;9(10):8679-8687. doi: 10.1021/acsami.6b15018. Epub 2017 Mar 6.
5
Thermodynamic limits to energy conversion in solar thermal fuels.
J Phys Condens Matter. 2019 Jan 23;31(3):034002. doi: 10.1088/1361-648X/aaef5a.
6
Azobenzene-based solar thermal fuels: design, properties, and applications.
Chem Soc Rev. 2018 Oct 1;47(19):7339-7368. doi: 10.1039/c8cs00470f.
7
Spatiotemporal Utilization of Latent Heat in Erythritol-based Phase Change Materials as Solar Thermal Fuels.
Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202400759. doi: 10.1002/anie.202400759. Epub 2024 Mar 7.
8
Photoresponsive Carbon-Azobenzene Hybrids: A Promising Material for Energy Devices.
Chemphyschem. 2023 Mar 14;24(6):e202200676. doi: 10.1002/cphc.202200676. Epub 2022 Dec 12.
10
Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers.
Macromol Rapid Commun. 2020 Jan;41(1):e1900413. doi: 10.1002/marc.201900413. Epub 2019 Nov 18.

引用本文的文献

2
Azobenzene protonation as a tool for temperature sensing.
Beilstein J Org Chem. 2025 Jul 28;21:1528-1534. doi: 10.3762/bjoc.21.115. eCollection 2025.
3
Tautomerism and switching in 7-hydroxy-8-(azophenyl)quinoline and similar compounds.
Beilstein J Org Chem. 2025 Jul 10;21:1404-1421. doi: 10.3762/bjoc.21.105. eCollection 2025.
5
A --Chlorinated Azobenzene Molecule for Visible-Light Photon Energy Conversion and Storage.
Molecules. 2025 May 27;30(11):2333. doi: 10.3390/molecules30112333.
6
Designing Molecular Solar Thermal Systems Based on the Paternò-Büchi Reaction Coupled to Enzymatic Energy Release.
ChemSusChem. 2025 Jul 27;18(15):e202500777. doi: 10.1002/cssc.202500777. Epub 2025 Jun 16.
7
Study on the Photoinduced Isomerization Mechanism of Hydrazone Derivatives Molecular Switch.
ACS Omega. 2025 Apr 23;10(17):17898-17906. doi: 10.1021/acsomega.5c00820. eCollection 2025 May 6.
8
Synthesis and photoinduced switching properties of C-heteroatom containing push-pull norbornadiene derivatives.
Beilstein J Org Chem. 2025 Apr 22;21:807-816. doi: 10.3762/bjoc.21.64. eCollection 2025.
9
Simulating the Energy Capture Process in Push-Pull Norbornadiene-Quadricyclane Photoswitches.
J Phys Chem Lett. 2025 May 1;16(17):4315-4325. doi: 10.1021/acs.jpclett.5c00634. Epub 2025 Apr 23.
10
Synthesis and Properties of Cyclic Imide Extended Diazocines: Tweezer-Like, Rigid Photoswitches with Large Switching Amplitudes.
Chemistry. 2025 May 22;31(29):e202500435. doi: 10.1002/chem.202500435. Epub 2025 Apr 3.

本文引用的文献

2
Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):1940-1949. doi: 10.1021/acsami.1c19819. Epub 2021 Dec 20.
3
Metal Ion Mediated Instant → Isomerization of Azobenzene Macrocycles in the Absence of Light.
J Org Chem. 2021 May 7;86(9):6314-6321. doi: 10.1021/acs.joc.1c00105. Epub 2021 Apr 15.
4
Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanoparticles under light and magnetic field.
J Colloid Interface Sci. 2021 Feb 1;583:586-593. doi: 10.1016/j.jcis.2020.09.058. Epub 2020 Sep 23.
5
Composition-tuned metal-organic thin-film structures based on photoswitchable azobenzene by ALD/MLD.
Dalton Trans. 2020 Aug 18;49(32):11310-11316. doi: 10.1039/d0dt02062a.
6
Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications.
Acc Chem Res. 2020 Aug 18;53(8):1478-1487. doi: 10.1021/acs.accounts.0c00235. Epub 2020 Jul 14.
8
Finding the true pathway for reversible isomerization of a single azobenzene molecule tumbling on Au(111) surface.
Nanoscale. 2020 May 21;12(19):10474-10479. doi: 10.1039/d0nr01629b. Epub 2020 May 6.
9
10
Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release below 0 °C.
J Am Chem Soc. 2020 May 13;142(19):8688-8695. doi: 10.1021/jacs.0c00374. Epub 2020 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验