Institute of Biomedical Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
Department of Ultrasound, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China.
Int J Comput Assist Radiol Surg. 2022 Dec;17(12):2349-2356. doi: 10.1007/s11548-022-02697-x. Epub 2022 Jun 29.
The robot-assisted automated puncture system under ultrasound guidance can well improve the puncture accuracy in ablation surgery. The automated puncture system requires advanced definition of the puncture location, while the displacement of thoracic-abdominal tumors caused by respiratory motion makes it difficult for the system to locate the best puncture position. Predicting tumor motion is an effective way to help the automated puncture system output a more accurate puncture position.
In this paper, we propose a self-attention-based feature pyramid algorithm FPSANet for time-series forecasting, which can extract both linear and nonlinear dependencies of time series. Firstly, we use the temporal convolutional network as the backbone to extract different scale time-series features, and the self-attention module is followed to weigh more significant features to improve nonlinear prediction. Secondly, we use autoregressive models to perform linear prediction. Finally, we directly combine the above two kinds of predictions as the final prediction.
FPSANet is trained and tested on our private datasets captured from clinical individuals, and we predict the target position after 50 ms, 150 ms, 300 ms and 400 ms. The result shows the evaluation criteria of the MAE is less than 1 mm at 50 ms and 150 ms, and less than 2 mm at 300 ms. Compared with the AR model, bidirectional LSTM and RVM, our method not only outperforms both models in accuracy (AR: ~ 7.7%; bidirectional LSTM: ~ 75.9%; RVM: ~ 76.5%) but is also more stable on different types of respiratory curves.
Respiratory motion in the liver in actual clinical practice vary widely from person to person, while sometimes having less distinct periodic patterns. Under these conditions, our algorithm has the advantage of excellent stability for prediction on various sequences, and its running time of performing single sequence prediction can meet clinical requirements.
在超声引导下,机器人辅助自动穿刺系统可以很好地提高消融手术中的穿刺精度。自动穿刺系统需要对穿刺位置进行高级定义,而胸腹部肿瘤因呼吸运动而产生的位移使得系统难以找到最佳的穿刺位置。预测肿瘤运动是帮助自动穿刺系统输出更准确穿刺位置的有效方法。
在本文中,我们提出了一种基于自注意力的特征金字塔算法 FPSANet 进行时间序列预测,该算法可以提取时间序列的线性和非线性依赖关系。首先,我们使用时间卷积网络作为骨干网络来提取不同尺度的时间序列特征,然后使用自注意力模块对更重要的特征进行加权,以提高非线性预测能力。其次,我们使用自回归模型进行线性预测。最后,我们直接将上述两种预测结果组合作为最终预测。
FPSANet 在我们从临床个体捕获的私人数据集上进行了训练和测试,我们预测了目标位置在 50ms、150ms、300ms 和 400ms 后的位置。结果表明,在 50ms 和 150ms 时 MAE 的评估标准小于 1mm,在 300ms 时小于 2mm。与 AR 模型、双向 LSTM 和 RVM 相比,我们的方法不仅在准确性方面优于这两种模型(AR:7.7%;双向 LSTM:75.9%;RVM:~76.5%),而且在不同类型的呼吸曲线下也更加稳定。
在实际临床实践中,肝脏的呼吸运动因人而异,而且有时没有明显的周期性模式。在这些条件下,我们的算法在对各种序列进行预测时具有出色的稳定性优势,并且其对单个序列进行预测的运行时间可以满足临床要求。