Suppr超能文献

基于周期自回归移动平均(Periodic ARMA)方法的呼吸运动双分量模型。

Dual-component model of respiratory motion based on the periodic autoregressive moving average (periodic ARMA) method.

作者信息

McCall K C, Jeraj R

机构信息

Department of Medical Physics, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Phys Med Biol. 2007 Jun 21;52(12):3455-66. doi: 10.1088/0031-9155/52/12/009. Epub 2007 May 18.

Abstract

A new approach to the problem of modelling and predicting respiration motion has been implemented. This is a dual-component model, which describes the respiration motion as a non-periodic time series superimposed onto a periodic waveform. A periodic autoregressive moving average algorithm has been used to define a mathematical model of the periodic and non-periodic components of the respiration motion. The periodic components of the motion were found by projecting multiple inhale-exhale cycles onto a common subspace. The component of the respiration signal that is left after removing this periodicity is a partially autocorrelated time series and was modelled as an autoregressive moving average (ARMA) process. The accuracy of the periodic ARMA model with respect to fluctuation in amplitude and variation in length of cycles has been assessed. A respiration phantom was developed to simulate the inter-cycle variations seen in free-breathing and coached respiration patterns. At +/-14% variability in cycle length and maximum amplitude of motion, the prediction errors were 4.8% of the total motion extent for a 0.5 s ahead prediction, and 9.4% at 1.0 s lag. The prediction errors increased to 11.6% at 0.5 s and 21.6% at 1.0 s when the respiration pattern had +/-34% variations in both these parameters. Our results have shown that the accuracy of the periodic ARMA model is more strongly dependent on the variations in cycle length than the amplitude of the respiration cycles.

摘要

一种用于模拟和预测呼吸运动问题的新方法已经实施。这是一个双分量模型,它将呼吸运动描述为叠加在周期性波形上的非周期性时间序列。使用了周期性自回归移动平均算法来定义呼吸运动的周期性和非周期性分量的数学模型。通过将多个吸气 - 呼气周期投影到一个公共子空间来找到运动的周期性分量。去除这种周期性后剩下的呼吸信号分量是一个部分自相关的时间序列,并被建模为自回归移动平均(ARMA)过程。评估了周期性ARMA模型在幅度波动和周期长度变化方面的准确性。开发了一个呼吸体模来模拟自由呼吸和指导呼吸模式中观察到的周期间变化。在周期长度和最大运动幅度变化为+/-14%时,提前0.5秒预测的误差为总运动范围的4.8%,滞后1.0秒时为9.4%。当呼吸模式在这两个参数上都有+/-34%的变化时,0.5秒时预测误差增加到11.6%,1.0秒时增加到21.6%。我们的结果表明,周期性ARMA模型的准确性对周期长度变化的依赖性比对呼吸周期幅度的依赖性更强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验