Suppr超能文献

电子结构效应对“捕光 1 反应中心复合物显著近红外吸收起源的影响”

Electronic Structure Effects Related to the Origin of the Remarkable Near-Infrared Absorption of ' Light Harvesting 1-Reaction Center Complex.

机构信息

Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM. Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano. Toluca de Lerdo 50200, México.

Instituto de Química. Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México.

出版信息

J Chem Theory Comput. 2022 Jul 12;18(7):4555-4564. doi: 10.1021/acs.jctc.2c00497. Epub 2022 Jun 29.

Abstract

Various photosynthetic organisms have evolved to absorb light in different regions of the visible light spectrum, thus adapting to the various lighting conditions available on Earth. While most of these autotrophic organisms absorb wavelengths around the 700-800 nm region, some are capable of red-shifted absorptions above this range, but none as remarkably as whose main absorption is observed at 1015 nm, approximately 220 nm (0.34 eV) lower in energy than their main constituent pigments, BChl-, whose main absorption is observed at 795 nm. The structure of its light harvesting 1-reaction center was recently elucidated by cryo-EM; however, the electronic structure details behind this red-shifted absorption remain unattended. We used hybrid quantum mechanics/molecular mechanics (QM/MM) calculations to optimize one of the active centers and performed classical molecular dynamics (MD) simulations to sample conformations beyond the optimized structure. We did excited state calculations with the time-dependent density functional theory method at the CAM-B3LYP/cc-pVDZ level of theory. We reproduced the near IR absorption by sequentially modifying the number of components involved in our systems using representative structures from the calculated MD ensemble. Natural transition orbital analysis reveals the participation of the BChl- fragments to the main transition in the native structure and the structures obtained from the QM/MM and MD simulations. H-bonding pigment-protein interactions play a role on the conformation stabilization and orientation; however, the bacteriochlorin ring conformations and the exciton delocalization are the most relevant factors to explain the red-shifting phenomenon.

摘要

各种光合作用生物已经进化到可以在可见光光谱的不同区域吸收光,从而适应地球上各种光照条件。虽然大多数自养生物吸收波长在 700-800nm 左右,但有些生物能够在这个范围之上进行红移吸收,但没有一种生物能像那样显著,其主要吸收在 1015nm 左右,比其主要色素 BChl-的吸收低 220nm(0.34eV),BChl-的主要吸收在 795nm 左右。其光收集 1-反应中心的结构最近通过低温电子显微镜(cryo-EM)阐明;然而,这种红移吸收背后的电子结构细节仍然没有得到关注。我们使用混合量子力学/分子力学(QM/MM)计算来优化一个活性中心,并进行经典分子动力学(MD)模拟以采样超出优化结构的构象。我们使用含时密度泛函理论(TDDFT)方法在 CAM-B3LYP/cc-pVDZ 理论水平上进行激发态计算。我们通过使用从计算 MD 集合中获得的代表性结构来逐步修改我们系统中涉及的组件数量来重现近红外吸收。自然跃迁轨道分析揭示了 BChl-片段在天然结构和从 QM/MM 和 MD 模拟获得的结构中参与主跃迁的情况。氢键色素-蛋白相互作用在构象稳定和取向中起作用;然而,细菌叶绿素环构象和激子离域化是解释红移现象的最相关因素。

相似文献

本文引用的文献

1
The Electronic Origin of Far-Red-Light-Driven Oxygenic Photosynthesis.远红光驱动产氧光合作用的电子起源。
Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202200356. doi: 10.1002/anie.202200356. Epub 2022 Feb 21.
3
10
Tuning antenna function through hydrogen bonds to chlorophyll a.通过氢键调节天线功能与叶绿素 a。
Biochim Biophys Acta Bioenerg. 2020 Apr 1;1861(4):148078. doi: 10.1016/j.bbabio.2019.148078. Epub 2019 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验