Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
Eur J Radiol. 2022 Sep;154:110422. doi: 10.1016/j.ejrad.2022.110422. Epub 2022 Jun 23.
Clinical PET/CT examinations rely on CT modality for anatomical localization and attenuation correction of the PET data. However, the use of CT significantly increases the risk of ionizing radiation exposure for patients. We propose a deep learning framework to learn the relationship mapping between attenuation corrected (AC) PET and non-attenuation corrected (NAC) PET images to estimate PET attenuation maps and generate pseudo-CT images for medical observation. In this study, 5760, 1608 and 1351 pairs of transverse PET-CT slices were used as the training, validation, and testing sets, respectively, to implement the proposed framework. A pix2pix model was adopted to predict AC PET images from NAC PET images, which allowed the calculation of PET attenuation maps (µ-maps). The same model was then applied to generate realistic CT images from the calculated µ-maps. The quality of predicted AC PET and CT was assessed using normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and Pearson correlation coefficient (PCC). Relative to true AC PET, the synthetic AC PET achieved superior quantitative performances with 2.20 ± 1.17% NRMSE, 34.03 ± 4.73 dB PSNR, 97.90 ± 1.22% SSIM and 98.45 ± 1.31% PCC. The synthetic CT and synthetic AC PET images were deemed acceptable by radiologists who rated the images, as they provided sufficient anatomical and functional information, respectively. This work demonstrates that the proposed deep learning framework is a promising method in clinical applications, such as radiotherapy and low-dose imaging.
临床正电子发射断层扫描/计算机断层扫描(PET/CT)检查依赖于 CT 模态进行 PET 数据的解剖定位和衰减校正。然而,CT 的使用会显著增加患者接受电离辐射的风险。我们提出了一个深度学习框架,用于学习衰减校正(AC)PET 与未衰减校正(NAC)PET 图像之间的关系映射,以估计 PET 衰减图并生成用于医学观察的伪 CT 图像。在这项研究中,分别使用 5760、1608 和 1351 对横向 PET-CT 切片作为训练、验证和测试集来实现所提出的框架。采用 pix2pix 模型从 NAC PET 图像预测 AC PET 图像,从而可以计算 PET 衰减图(µ 图)。然后,同一模型被应用于从计算出的 µ 图生成逼真的 CT 图像。使用归一化均方根误差(NRMSE)、峰值信噪比(PSNR)、结构相似性指数(SSIM)和 Pearson 相关系数(PCC)评估预测的 AC PET 和 CT 的质量。与真实的 AC PET 相比,合成的 AC PET 具有更好的定量性能,NRMSE 为 2.20±1.17%,PSNR 为 34.03±4.73dB,SSIM 为 97.90±1.22%,PCC 为 98.45±1.31%。放射科医生认为,合成 CT 和合成 AC PET 图像是可以接受的,因为它们分别提供了足够的解剖和功能信息。这项工作表明,所提出的深度学习框架在放射治疗和低剂量成像等临床应用中具有广阔的应用前景。