文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review.

作者信息

Le Thanh Dat, Shitiri Nchumpeni Chonpemo, Jung Sung-Hoon, Kwon Seong-Young, Lee Changho

机构信息

Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Jeollanam-do, Republic of Korea.

Department of Hematology-Oncology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.

出版信息

Sensors (Basel). 2024 Dec 18;24(24):8068. doi: 10.3390/s24248068.


DOI:10.3390/s24248068
PMID:39771804
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11679239/
Abstract

Nuclear medicine imaging (NMI) is essential for the diagnosis and sensing of various diseases; however, challenges persist regarding image quality and accessibility during NMI-based treatment. This paper reviews the use of deep learning methods for generating synthetic nuclear medicine images, aimed at improving the interpretability and utility of nuclear medicine protocols. We discuss advanced image generation algorithms designed to recover details from low-dose scans, uncover information hidden by specific radiopharmaceutical properties, and enhance the sensing of physiological processes. By analyzing 30 of the newest publications in this field, we explain how deep learning models produce synthetic nuclear medicine images that closely resemble their real counterparts, significantly enhancing diagnostic accuracy when images are acquired at lower doses than the clinical policies' standard. The implementation of deep learning models facilitates the combination of NMI with various imaging modalities, thereby broadening the clinical applications of nuclear medicine. In summary, our review underscores the significant potential of deep learning in NMI, indicating that synthetic image generation may be essential for addressing the existing limitations of NMI and improving patient outcomes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/360b22ecfcf6/sensors-24-08068-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/75c662ef8500/sensors-24-08068-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/fb6d9e0adfe5/sensors-24-08068-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/3d196862cca7/sensors-24-08068-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/b323a4e16a2f/sensors-24-08068-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/6e9cca8b5a8a/sensors-24-08068-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/8e56e92d8adb/sensors-24-08068-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/2ee958d1fd61/sensors-24-08068-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/360b22ecfcf6/sensors-24-08068-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/75c662ef8500/sensors-24-08068-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/fb6d9e0adfe5/sensors-24-08068-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/3d196862cca7/sensors-24-08068-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/b323a4e16a2f/sensors-24-08068-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/6e9cca8b5a8a/sensors-24-08068-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/8e56e92d8adb/sensors-24-08068-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/2ee958d1fd61/sensors-24-08068-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8f/11679239/360b22ecfcf6/sensors-24-08068-g008.jpg

相似文献

[1]
Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review.

Sensors (Basel). 2024-12-18

[2]
Deep learning in nuclear medicine: from imaging to therapy.

Ann Nucl Med. 2025-5

[3]
Pathology Image Analysis Using Segmentation Deep Learning Algorithms.

Am J Pathol. 2019-6-11

[4]
Artificial Intelligence in Nuclear Cardiology.

J Nucl Med. 2019-8

[5]
Deep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image space.

Comput Methods Programs Biomed. 2024-1

[6]
The Evolution of Artificial Intelligence in Nuclear Medicine.

Semin Nucl Med. 2025-5

[7]
Fast SPECT/CT planar bone imaging enabled by deep learning enhancement.

Med Phys. 2024-8

[8]
Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning.

Eur J Nucl Med Mol Imaging. 2022-7

[9]
Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge.

Comput Methods Programs Biomed. 2022-6

[10]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

引用本文的文献

[1]
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications.

Pharmaceutics. 2025-7-14

本文引用的文献

[1]
Deep learning-based body composition analysis from whole-body magnetic resonance imaging to predict all-cause mortality in a large western population.

EBioMedicine. 2024-12

[2]
Radiomics insight into the neurodegenerative " brain: A narrative review from the nuclear medicine perspective.

Front Nucl Med. 2023-2-27

[3]
Generative AI and large language models in nuclear medicine: current status and future prospects.

Ann Nucl Med. 2024-11

[4]
Image synthesis of interictal SPECT from MRI and PET using machine learning.

Front Neurol. 2024-6-25

[5]
SAROS: A dataset for whole-body region and organ segmentation in CT imaging.

Sci Data. 2024-5-10

[6]
Deep learning-based whole-body PSMA PET/CT attenuation correction utilizing Pix-2-Pix GAN.

Oncotarget. 2024-5-7

[7]
Full-dose whole-body PET synthesis from low-dose PET using high-efficiency denoising diffusion probabilistic model: PET consistency model.

Med Phys. 2024-8

[8]
Synthetic PET from CT improves diagnosis and prognosis for lung cancer: Proof of concept.

Cell Rep Med. 2024-3-19

[9]
Learning CT-free attenuation-corrected total-body PET images through deep learning.

Eur Radiol. 2024-9

[10]
Generating PET Attenuation Maps via Sim2Real Deep Learning-Based Tissue Composition Estimation Combined with MLACF.

J Imaging Inform Med. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索