Suppr超能文献

认知诊断评估中未达项目的建模

Modeling Not-Reached Items in Cognitive Diagnostic Assessments.

作者信息

Liang Lidan, Lu Jing, Zhang Jiwei, Shi Ningzhong

机构信息

Key Laboratory of Applied Statistics of MOE, School of Mathematics and Statistics, Northeast Normal University, Changchun, China.

School of Mathematics and Statistics, Yili Normal University, Yining, China.

出版信息

Front Psychol. 2022 Jun 13;13:889673. doi: 10.3389/fpsyg.2022.889673. eCollection 2022.

Abstract

In cognitive diagnostic assessments with time limits, not-reached items (i.e., continuous nonresponses at the end of tests) frequently occur because examinees drop out of the test due to insufficient time. Oftentimes, the not-reached items are related to examinees' specific cognitive attributes or knowledge structures. Thus, the underlying missing data mechanism of not-reached items is non-ignorable. In this study, a missing data model for not-reached items in cognitive diagnosis assessments was proposed. A sequential model with linear restrictions on item parameters for missing indicators was adopted; meanwhile, the deterministic inputs, noisy "and" gate model was used to model the responses. The higher-order structure was used to capture the correlation between higher-order ability parameters and dropping-out propensity parameters. A Bayesian Markov chain Monte Carlo method was used to estimate the model parameters. The simulation results showed that the proposed model improved diagnostic feedback results and produced accurate item parameters when the missing data mechanism was non-ignorable. The applicability of our model was demonstrated using a dataset from the Program for International Student Assessment 2018 computer-based mathematics cognitive test.

摘要

在有时间限制的认知诊断评估中,未作答题目(即测试结束时连续未作答)经常出现,因为考生会由于时间不足而退出测试。通常,未作答题目与考生的特定认知属性或知识结构有关。因此,未作答题目的潜在缺失数据机制是不可忽略的。在本研究中,提出了一种用于认知诊断评估中未作答题目的缺失数据模型。采用了一种对缺失指标的项目参数具有线性限制的序列模型;同时,使用确定性输入、噪声“与”门模型对作答进行建模。使用高阶结构来捕捉高阶能力参数和退出倾向参数之间的相关性。采用贝叶斯马尔可夫链蒙特卡罗方法来估计模型参数。模拟结果表明,当缺失数据机制不可忽略时,所提出的模型改善了诊断反馈结果并产生了准确的项目参数。使用2018年国际学生评估项目计算机化数学认知测试的数据集证明了我们模型的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b31/9236559/0d07459566a6/fpsyg-13-889673-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验